Journal of Business and Economic Statistics
Jeffrey S. Racine, Qi Li, Dalei Yu & Li Zheng
Abstract
Model averaging has a rich history dating from its use for combining forecasts from time-series models (Bates and Granger) and presents a compelling alternative to model selection methods. We propose a frequentist model averaging procedure defined over categorical regression splines (Ma, Racine, and Yang) that allows for mixed-data predictors, as well as nonnested and heteroscedastic candidate models. We demonstrate the asymptotic optimality of the proposed model averaging estimator, and develop a post-averaging inference theory for it. Theoretical underpinnings are provided, finite-sample performance is evaluated, and an empirical illustration reveals that the method is capable of outperforming a range of popular model selection criteria in applied settings. An R package is available for practitioners (Racine).
Read more
https://www.tandfonline.com/doi/full/10.1080/07350015.2022.2118126