题目: Semi-Nonparametric Estimation of Random Coefficient Logit Model for Aggregate Demand
主讲人: 史晓霞,威斯康辛大学麦迪逊分校
时间:2021年12月22日上午11:30-13:00(北京时间)
举办方式:线上讲座,扫描文末二维码即可报名
主讲人简介
Abstract
In this paper, we propose a two-step semi-nonparametric estimator for the widely used random coefficient logit demand model. In the first step, exploiting the structure of logit choice probabilities, we transform the full demand system into a partial linear model and estimate the fixed (non-random) coefficients using standard linear sieve generalized method of moment (GMM). In the second step, we construct a sieve minimum distance (MD) estimator to uncover the distribution of random coefficients nonparametrically. We establish the asymptotic properties of the estimator and show the semi-nonparametric identification of the model in a large market environment. Monte Carlo simulations and empirical illustrations support the theoretical results and demonstrate the usefulness of our estimator in practice.