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Abstract 

We provide the first study estimating the causal effect of air pollution on body weight and 

obesity. Using the China Health and Nutrition Survey, which contains detailed longitudinal 

health and socioeconomic information for 13,741 adult individuals over 1989–2015, we find 

significant positive effects of air pollution, instrumented by thermal inversions, on body 

weight. Specifically, a 1 µg/m3 (1.54%) increase in average PM2.5 concentrations in the past 

12 months increases the body mass index by 0.27%, and also increases the overweight and 

obesity rates by 0.82 and 0.27 percentage points, respectively. We find evidence that these 

impacts can be explained by a variety of behavioral channels, including less physical activity, 

less walking to work/school, less sleep, and more fat intake.  
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1 Introduction 

      The last decades have seen an unprecedented increase in the fraction of 

population with body weight issues worldwide. In 2016, nearly 40% of adults were 

overweight (body mass index (BMI)>=25), while 11% of men and 15% of women 

worldwide were obese (BMI>=30) (WHO, 2018a). By contrast, the obesity rate in 

1975 was only 3.2% for men and 6.4% for women (NCD-RisC, 2016). Overweight 

and obesity are important risk factors for a variety of chronic diseases, including 

diabetes, cardiovascular and kidney diseases, and some cancers (WHO, 2018a). It is 

estimated that overweight and obesity lead to at least 2.8 million deaths and 35.8 

million disability-adjusted life years annually across the world (WHO, 2018b), and 

amounted to 2.8% of the global GDP in 2014 (Dobbs et al., 2014).   

      In response to this epidemic, numerous economics studies have sought to 

understand the complex and varied causes of obesity1. This paper provides the first 

causal link between ambient air pollution, and particularly, fine particulate matter 

(PM2.5)
2 and obesity. At present, over 90% of the global population lives in places 

with poor air quality. Understanding the link between air pollution and obesity is thus 

crucial for policy makers.   

      Our focus on China provides a unique opportunity to study the relationship 

between air pollution and obesity. Over the past decades, China’s GDP has increased 

                                                 
1 The majority of these studies have focused on the U.S., which currently has nearly 40% obese 

adults (Hales et al., 2018).  

2 We measure ambient air pollution using PM2.5. Therefore, we use two terms interchangeably 

throughout this paper. 
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from USD 797 billion in 1989 to USD 8.89 trillion in 2015. Meanwhile, the national 

average concentration of PM2.5 increased from 40.1 to 66.9 µg/m3 (Panel A of Figure 

1). In the same period, the prevalence of overweight and obesity has also increased 

rapidly. The average BMI increased by 12.7%, while overweight and obesity rates 

increased from 8.29% to 38.48% and from 0.46% to 5.83%, respectively (Panels B–D 

of Figure 1). In 2014, China ranked first in obese men (16.3% of global obesity) and 

women (12.4% of global obesity) (NCD RisC, 2016).  

      Air pollution can affect body weight through biological channels (e.g., 

slowing down the metabolism) and behavioral channels (e.g., reducing exercise and 

increasing calorie intake)3. Although previous health science studies have suggested 

multiple potential pathways between air pollution exposure and body weight, 

identifying the causal effect is challenging primarily because of the potential for 

omitted-variable bias. For example, air pollution is a byproduct of economic activity, 

and typically correlated with economic confounders, such as income and food prices, 

which are also important determinants of obesity (Cawley, 2015).   

      To identify the causal effect of air pollution on body weight, we use thermal 

inversions as an instrumental variable for air pollution. Thermal inversions occur 

when the temperature in the upper atmospheric layer is higher than that of the lower 

layer, thereby trapping air pollution near the surface. The formation of thermal 

inversions is a complex meteorological phenomenon and is typically independent of 

economic activities, as we demonstrate below. Importantly, we utilize the longitudinal 

                                                 
3 See detailed discussion in Section 2.  



 

4 

 

structure of our health survey data and include individual fixed effects. Therefore, 

identification is driven by fluctuations in air pollution instrumented by variation in 

arguably exogenous thermal inversions across different years for the same individual. 

In addition, we flexibly control for weather and include year-by-month fixed effects 

to control for seasonality in environmental and economic conditions.  

      We use data on body weight and height from the China Health and Nutrition 

Survey (CHNS), which is the longest and most comprehensive health survey in China. 

The CHNS provided detailed information on health and nutrition along with 

socioeconomic and demographic data for 13,741 adult individuals (aged 18 or older) 

from eight provinces in China over the period of 1989–2015. Notably, the data on 

body weight and height, which we use to define BMI, are recorded by survey 

enumerators instead of being self-reported and are subject to measurement error bias. 

We then match the CHNS data with satellite-based pollution and thermal inversions 

data by county of residence and month of the interview for each interviewee.   

      Using a two-stage least squares (2SLS) estimator, we find a positive and 

statistically significantly effect of PM2.5 on body weight. Specifically, a 1 µg/m3 

(1.54%) increase in average PM2.5 concentrations in the past 12 months increases 

BMI by 0.27%, and increases the overweight and obesity rates by 0.82 and 0.27 

percentage points, respectively. The dynamics of exposure to air pollution matter: we 

do not detect significant short-run effects coming from exposure to air pollution in the 

past one to three months.   



 

5 

 

      We then study the effect of pollution on behavioral responses including 

physical and sedentary activities, sleeping, transportation mode, and calorie intake. 

We find that air pollution reduces physical activity, the probability of walking to 

work/school, and sleeping time. On the other hand, air pollution increases fat intake. 

This suggests that the behavioral channels play an important role in the 

pollution-obesity relationship.  

      This paper contributes to two strands of the literature. First, a large body of 

literature estimates the cost of air pollution on a variety of economic outcomes, 

including mortality and morbidity (Chay and Greenstone, 2003; Schlenker and 

Walker, 2015; Deryugina et al., 2019), labor productivity (Graff Zivin and Neidell, 

2012), labor supply (Hanna and Oliva, 2015), and test scores (Ebenstein et al., 2016). 

We identify a new chronic morbidity cost of air pollution, and find that a 1 µg/m3 

increase in average PM2.5 concentrations induces a total of CNY 1.89 billion (USD 

0.27 billion) health expenditure on overweight and obesity. 

      Second, an emerging literature seeks to understand the economic causes of 

obesity (Cawley, 2015). Most previous studies have focused on economic factors, 

including proximity to fast food outlets (Currie et al., 2010; Anderson and Matsa, 

2011), income (Cawley et al., 2010; Akee et al., 2013), education (Brunello et al., 

2013; Clark and Royer, 2013), and peer and neighborhood effects (Kling et al., 2007; 

Carrell et al., 2011). We show that the environment, particularly ambient air pollution, 

also plays an important role in causing obesity.  
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2 Mechanisms 

      Air pollution can affect body weight through several channels. First, air 

pollution could lead to metabolic disorder, which is closely related to body weight 

(An et al., 2018a). For example, Xu et al. (2011) find that PM2.5 exposure triggers 

oxidative stress and adipose tissue inflammation, which further predispose to 

metabolic dysfunction. Toledo-Corral et al. (2018) find that PM2.5 exposure has 

negative effect on glucose metabolism.  

      Second, air pollution could affect body weight indirectly through elevating the 

risks for a number of chronic diseases (An et al., 2018a). For example, air pollution 

exposure could lead to cardiovascular and respiratory diseases, heart diseases, and 

some cancers (WHO, 2018c). Consequently, these chronic diseases, could affect body 

weight (An et al., 2018a).  

      Third, air pollution could affect body weight through sleep disorders. 

Researchers have found that air pollution causes sleeplessness (Heyes and Zhu, 2019)   

Sleep disorders, in turn, could increase BMI because of decreased leptin, 

thyroid-stimulating hormone secretion, and glucose tolerance, as well as increased 

ghrelin level (Keith et al., 2006).   

      Lastly, pollution could also affect body weight through behavioral responses. 

Many studies find that people are likely to stay indoors in response to elevated air 

pollution levels (Neidell, 2009), reduce physical activities, and increase sedentary 

behaviors such as sitting, reclining, and lying (Jerrett et al., 2010; McConnell et al., 

2014; Li et al., 2015; An et al., 2018b). These behaviors may reduce the net calories 
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expended and increase body weight and obesity risk (WHO, 2018a). Air pollution 

could also lead to a direct increase in calories consumed. For example, Chen et al. 

(2018) find that air pollution is likely to induce a variety of mental illness, such as 

depression and anxiety, which could release the hormone cortisol and increase 

appetite for energy-intensive foods, insulin resistance, and fat accumulation 

(Björntorp, 1997).  

     A few studies in the health science literature estimate the correlation between 

air pollution and obesity using regression models. For example, Li et al. (2016) focus 

on 2,372 participants from the Framingham Offspring and Third Generation cohorts 

in the U.S., and find that participants who lived near a major roadway (where the air 

is more polluted) have higher BMI and obesity rates. Similarly, Li et al. (2015) focus 

on 24,845 Chinese adults, and find a positive correlation between air pollution and 

obesity.  

     Overall, these studies do not have proper identification strategies and are 

lacking of tests of the mechanisms linking air pollution and body weight. The goal of 

this paper is to formally test if air pollution is causally related to elevated body weight 

and obesity risks, and test a few possible behavioral mechanisms.     

3 Empirical Strategy 

     The primary empirical challenge for identifying the causal effect of air 

pollution on body weight is the omitted-variable bias. As a byproduct of economic 

activity, air pollution is typically correlated with many economic confounders, such as 
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income and food prices. These confounders are also important determinants of body 

weight, and their independent effects could be either positive or negative. In particular, 

additional income could either increase or decrease body weight. For example, if both 

high-caloric food and health investments are normal goods, additional income will 

increase their consumption. If more high-caloric food are consumed than health 

investments as a result of an increase in income, then additional income will increase 

body weight, and vice versa. Indeed, researchers have documented an inverted 

U-shaped relationship between income and weight (Philipson and Posner, 2003; 

Lakdawalla et al., 2005).  

      Because of the ambiguous effect of economic confounders on body weight as 

well as the correlation between air pollution and those economic confounders, the bias 

direction of air pollution on body weight is a priori unknown. To help identify the 

causal effect, we rely on an instrumental variables approach. In particular, we use 

thermal inversions, a meteorological phenomenon, as an instrumental variable for air 

pollution.  

      Under normal conditions, the temperature in the upper atmospheric layer is 

lower than that of the surface layer. Therefore, air pollutants can be transmitted from 

the ground to the upper layer and further be spread out. Under certain circumstances 

(see Arceo et al. (2016)), the temperature in the upper layer is higher than that of the 

ground layer, thereby forming a thermal inversion. In that case, air pollutants are 

trapped near the ground leading to high air pollution concentrations.  
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      Given that thermal inversions are a high atmosphere meteorological 

phenomenon, their formation can be presumed independent of economic activity. 

Figure 2 illustrates this point by plotting annual GDP and the average annual 

cumulative thermal inversions in China over 1989–20154. GDP has a clear positive 

trend with an R-square of 0.9159. On the other hand, the number of thermal 

inversions per year highly fluctuates and does not have a clear time trend. The fitted 

line (shown with a dashed line) is almost horizontal and the R-square is only 0.0001.  

      In Figure 3, we show further evidence that thermal inversions are not 

correlated with economic activity. We plot the change in GDP (X-axis) and the 

change inversions (Y-axis) for each county in China between 1999 and 20145. It is 

evident that all counties experienced positive changes in GDP. On the other hand, 

about half of counties experience positive changes in thermal inversions and half 

experience negative changes. In addition, the counties having the highest increase in 

GDP do not necessarily have the highest increase or decrease in thermal inversions. 

The fitted line between change in GDP and thermal inversions are almost horizontal, 

with an R-squared of 0.0007. Based on Figures 2 and 3 we conclude that GDP and 

thermal inversions are essentially unrelated, in both nation and county levels.  

      To ensure that our instrument meets the exclusion restriction criteria, we 

control for flexible weather variables so that thermal inversions only affect body 

                                                 
4 For each dot, we sum all thermal inversions (determined with each six-hour period) in a given 

county and year, and then average over all counties for each year. 

5 The county-level GDP data are from the county statistical yearbook. They are only available from 

1999, and covered 1,842 counties. We do not replicate Figure 3 for our sample counties (71 

counties) because 31 of them do not have GDP data.  
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weight through air pollution. Thermal inversions have been used as IV for short-run 

air pollution (days and weeks) in Arceo et al. (2016), Chen et al. (2018), and Jans et al. 

(2018) and medium-run air pollution (months and years) in Chen et al. (2017) and Fu 

et al. (2018).   

      We propose the following 2SLS model to estimate the causal effect of air 

pollution on body weight: 

𝑌𝑖𝑐𝑡 = 𝛽0 + 𝛽1𝑃𝑖𝑐𝑡 + 𝑓(𝑊𝑖𝑐𝑡) + 𝛾𝑖 + 𝜎𝑡 + 𝜀𝑖𝑐𝑡 (1) 

𝑃𝑖𝑐𝑡 = 𝛼0 + 𝛼1𝐼𝑖𝑐𝑡 + 𝑓(𝑊𝑖𝑐𝑡) + 𝛾𝑖 + 𝜎𝑡 + 𝑢𝑖𝑐𝑡 (2). 

      In the model, 𝑌𝑖𝑐𝑡 denotes the body weight measures, including BMI, and 

indicators for overweight and obesity for individual 𝑖 residing in county 𝑐 at date 𝑡. 

We use 𝑃𝑖𝑐𝑡 to denote the average concentration of PM2.5
6. Note that we do not have 

a priori specified the exposure window, as there is no consensus from the previous 

health science literature7. In other words, we do not know how long an individual 

needs to be exposed to elevated levels of air pollution before it affects body weight. In 

this paper, we vary the exposure window from one month to 18 months and let the 

data determine the appropriate length of the exposure window. We choose an 

exposure window of 12 months as a starting point as many paper in the literature on 

the health impacts of air pollution focus on annual outcomes. For example, if an 

individual’s BMI was measured on June 15, 2000 in county 𝑐, we use the average 

concentration of PM2.5 from July 1999 to June 2000 for that county. Since our 

                                                 
6 Note that pollution and inversion data are at county-level, but all regression models are estimated 

at individual level to ensure the use of individual fixed effects.  

7 For example, Li et al. (2015) used a three-year exposure window, and Li et al. (2016) used a 

one-year exposure window.  
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pollution data are only available at monthly level, we cannot construct an exposure 

window based on specific dates, (i.e., June 16, 1999 to June 15, 2000). We conduct a 

robustness check by excluding the current month when we construct the 12-month 

exposure window8.  

      We instrument 𝑃𝑖𝑐𝑡 using the number of thermal inversions, denoted by 𝐼𝑖𝑐𝑡, 

in the same exposure window. We use 𝑓(𝑊𝑖𝑐𝑡) to denote weather variables in 

flexible specifications in the same exposure window. Specifically, we use the number 

of days within each 5 °C bin and the quadratics of average relative humidity, sunshine 

duration, wind speed, and pressure, and cumulative precipitation. We include 

individual fixed effects, 𝛾𝑖, to control for any time-invariant and individual-specific 

characteristics that may be related to body weight and exposure to air pollution, such 

as gender, baseline metabolism, and geographic locations. We include year-by-month 

fixed effects (denoted by 𝜎𝑡), to control for nation-wide seasonality in air pollution, 

economic conditions, and overall health.  

      We use two-way clustering (Cameron et al., 2011) at the individual and 

county-year-month levels. This controls for the autocorrelation in the measurements 

for the same individual across different survey years as well as the autocorrelation 

within each county-year-month cell. Our results are robust to alternative clustering 

methods, which we discussed in the Results section.  

                                                 
8 For example, if an individual’s BMI was measured on June 15, 2000, our baseline PM2.5 measure 

uses the average from July 1999 to June 2000, while our alternative measure uses the average 

from June 1999 to May 2000. 
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      In summary, our identification relies on comparing BMI of the same 

individual in a more inversion-intensive and thus more polluted year versus a less 

inversion-intensive and polluted year, after we adjust the year-specific seasonality and 

weather shocks.  

4 Data 

4.1 BMI and obesity 

      We obtain BMI data from the CHNS, which is one of the longest and most 

comprehensive longitudinal health surveys in China and is still ongoing. The CHNS is 

jointly conducted by the University of North Carolina at Chapel Hill and the Chinese 

Center for Disease Control and Prevention. The survey covered 15,000–19,000 

individuals in 4400–7200 households from nine provinces9 (two-digit code)10 over 

the period of 1989–201511. The sample was selected using a multistage random 

cluster sampling method. Specifically, for each province, two cities (four-digit code) 

and four counties (six-digit code) were randomly selected. The survey then randomly 

selected urban districts (six-digit code) for cities and villages and towns for counties. 

These areas were defined as communities. Finally, households were randomly 

                                                 
9 The nine provinces are Liaoning, Heilongjiang, Jiangsu, Shandong, Henan, Hubei, Hunan, 

Guangxi, and Guizhou. We only have eight provinces in our sample because the county identifier 

is not available in Heilongjiang.    

10 China has three administrative levels, namely, provinces/municipal cities (two-digit code), 

prefectures/cities (four-digit code), and counties/districts (six-digit code). See 

http://www.stats.gov.cn/tjsj/tjbz/tjyqhdmhcxhfdm/.  

11 The years are 1989, 1991, 1993, 1997, 2000, 2004, 2006, 2009, 2011, and 2015.   

http://www.stats.gov.cn/tjsj/tjbz/tjyqhdmhcxhfdm/
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selected from these communities. This dataset has been used in several previous 

studies (e.g., Wang, 2011 and Wang, 2013).  

      The CHNS provides detailed information on health and nutrition as well as 

socioeconomic and demographic characteristics for both rural and urban households 

in China. One key advantage of the CHNS is that the body weight and height are 

measured by medical staff instead of being self-reported by the interviewee. This is 

important because individuals tend to underreport their weight, especially for heavier 

individuals (Cawley et al., 2015). We calculate BMI using the body weight measured 

in kilograms (kg) divided by the square of the body height measured in square meters 

(m2). The unit of BMI is thus kg/m2. Note that this formula only applies to adults aged 

18 or above, and thus our sample only includes adults12. We define a person is 

overweight if BMI>=25, and obese if BMI>=30 (WHO, 2018a)13. 

4.2 Air pollution 

      Our data on air pollution are from the satellite-based Aerosol Optical Depth 

(AOD) retrievals. In particular, we obtain the AOD data from the Modern-Era 

Retrospective Analysis for Research and Applications version 2 (MERRA-2) from the 

NASA of the U.S. The data are available at 50*60-km grid level for each month since 

1980. We calculate the concentration of PM2.5 following the formula provided by 

                                                 
12 We do not focus on children because individual’s birth month is not publicly available in CHNS, 

so overweight and obesity cannot be accurately measured using sex- and age-specific (in months) 

growth charts from CDC or WHO.   

13 Overweight sometimes is defined between 25 and 30. In this case, obesity is excluded from the 

overweight category. Therefore, our measure on overweight includes both overweight and obesity. 
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Buchard et al. (2016). We then aggregate from grid to county for each month14 and 

further average to the 12-month exposure window. This dataset has been used in 

previous studies (Chen et al., 2017; Fu et al., 2017), and validated with ground-based 

pollution data in China (Chen et al., 2017). We do not use ground-based pollution 

data mainly because they are only available after 2000 and covered only a few cities.   

4.3 Thermal inversions 

      We also obtain the thermal inversions data from MERRA-2. The data report 

air temperature for each 50*60-km grid for 42 atmospheric layers, ranging from 110 

meters to 36,000 meters. The data are available at six-hour periods from 1980 

onwards. We aggregate all data from grid to county using the same method used for 

the air pollution data. We determine the existence of a thermal inversion if the 

temperature in the second layer (320 meters) is higher than that of the first layer (110 

meters) for each six-hour period, and then aggregate the number of inversions to the 

12-month exposure window.  

4.4 Weather 

      The weather data are obtained from the National Meteorological Information 

Center, which releases daily weather variables, including temperature, precipitation, 

relative humidity, sunshine duration, wind speed, and pressure for more than 800 

                                                 
14 The aggregation is conducted as follows. First, we downscale the original 50*60-km grid by five 

times using the bilinear method (Hijmans et al., 2015). This is because some counties are smaller than 

the 50*60-km grid. We then take the average for all downscaled grids within each county.  
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weather stations in China. We use the inverse-distance weighting (IDW) method to 

convert weather data from station to county level and choose a radius of 200 km. To 

account for the possible non-linear effects of temperature, we calculate the number of 

days within each 5 °C bin in the 12-month exposure window. For other weather 

variables, we use average relative humidity, sunshine duration, wind speed and 

pressure, and cumulative precipitation in the same period. We also include the 

quadratic of each weather variables except for temperature bins to account for 

possible non-linear effects.  

4.5 Summary statistics 

      Our final sample has 13,741 adult individuals from 71 counties/districts across 

eight provinces over 1989–2015. Figure A1 in the Online Appendix plots the number 

of interviewees in each survey year. There were 3,452 interviewees in 1989, and the 

number of interviewees increased to 7,612 in 1991 and was relatively stable 

afterwards. Thus, our sample is an unbalanced panel. Figure A2 in the Online 

Appendix shows the frequency of interviews per interviewee. A total of 3,520 and 

2,296 were interviewed twice and thrice, respectively. Only 563 individuals are 

present throughout the entire sample period.  

      One concern is that pollution may induce people to move (Chen et al., 2017) 

and thus bias our estimates. Note that the individual fixed effects should absorb all 

initial sorting into difference places, including sorting based on differential pollution 

levels. Therefore, only individuals moving during our sample period can potentially 
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bias the estimates. The survey asked the moving status of each individual for the 

household. In our final sample, 99.71% of individuals remained in the same county. 

Given this low rate of mobility, our results are robust if we only use the individuals 

who remained in the same county.  

      An important feature of the CHNS design is that interviews are only 

conducted from July to December, with 90% of the total interviews conducted 

between September and November (Figure A3 in the Online Appendix). Thermal 

inversions also have a strong seasonality mainly because of climatic related factors. 

Figure A4 in the Online Appendix plots the average of the monthly cumulative 

thermal inversions across months15. It is clear that most inversions occurred in the 

non-summer months. This differential seasonality in the natural occurrence of thermal 

inversions and timing of the CHNS interviews dictate that we define exposure 

windows that are long enough to stretch across thermal inversions seasons. Our 

baseline focuses on a 12-month exposure window where CHNS interviews are linked 

to air pollution and thermal inversions recorded over the preceding 12 months.  

This seasonality should not bias our baseline estimates for two reasons. First, 

the interview time changes minimally across years because the majority are 

concentrated in the Fall. Thus, for our baseline exposure window, i.e., 12 months, we 

mainly use year-to-year variations (e.g., October 1999 to September 2000 versus 

October 2003 to September 2004), instead of season-to-season variations across years 

(e.g., October 1999-September 2000 versus June 2003-May 2004). Second, we 

                                                 
15 For each dot, we sum all thermal inversions (determined with each six-hour period) in a given 

county and month, and then average over all counties in the same month. 
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include year-by-month fixed effects, which control for the unobserved shocks specific 

to particular year-month combinations.     

      Table 1 reports the summary statistics. We have three measures of body mass: 

BMI, and the indicators for overweight and obesity (reported as percentage points in 

the table). We also report the average weight and height. In our sample, the average 

BMI is 22.76 with a standard deviation of 3.37. The average BMI is 24.19 in 2015, 

which is close to the cutoff of 25 for overweight. Figure 4 plots the histogram of BMI 

and shows that most observations are concentrated between 18 and 25. There are 

some extreme values, with the minimum of 4.83 and maximum of 63.78. Our results 

are robust if we drop the top and bottom 0.5% of the data.  

      The average overweight and obesity rates are 23.00% and 2.83% during our 

sample period, with 38.48% and 5.83% respectively in 2015. The average body 

weight is 58.47 kg, and average height is 160.03 cm. Females account for 52% of the 

observations and have slightly higher BMI and overweight and obesity rates than 

males. The same pattern has been found in the U.S. (National Center for Health 

Statistics, 2014) and the world (WHO, 2018a).  

      The average concentrations of PM2.5 are 64.75 µg/m3, which are six times 

higher than the WHO standard of ten µg/m3 (WHO, 2006). The concentration varies 

from a minimum of 23.75 to a maximum 141.32, with a standard deviation of 26.99. 

The average annual cumulative inversion times are 267.95. Since the occurrence is 

determined at each six-hour period, the probability of having an inversion in the 

six-hour period is 267.95/(4*365)=18.35%.   
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5 Results 

5.1 Effect of thermal inversions on air pollution 

       Table 2 reports the estimated effect of thermal inversions on PM2.5 

concentrations. In column (1), we include individual fixed effects and year fixed 

effects. In column (2), we replace year fixed effects with year-by-month fixed effects, 

to control for year-specific seasonality. In the last column, we further add detailed 

weather controls.   

      Overall, we find a strong first-stage relationship. The estimated coefficients 

are stable across specification and statistically significant at the 1% level. Moreover, 

the KP F-statistic in the preferred specification in column (3), which includes weather 

controls, is well above the Stock-Yogo critical value of 16.38 (Stock and Yogo, 2005). 

The magnitude is also significant and suggests that one additional thermal inversion 

(0.37% of the mean) in the past 12 months increases PM2.5 concentrations in the same 

period by 0.0288 µg/m3 (0.04% of the mean), corresponding to an elasticity of 0.11.   

5.2 2SLS estimates of the effect of air pollution on body mass 

      Table 3 reports the main 2SLS estimates of the impact of air pollution on 

various indicators of body mass. The dependent variables are BMI in columns (1) and 

(2), indicators for overweight in columns (3) and (4) and for obesity in columns (5) 

and (6). Panel A reports the 2SLS estimates while Panel B reports the OLS estimates 

when air pollution is not instrumented. The specification in both panels and all 
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columns include individual fixed effects and weather controls. Columns (1), (3), and 

(5) include year fixed effects while columns (2), (4), and (6) include year-by-month 

fixed effects.  

      Several important results emerge from this table. First, we find a statistically 

significant and economically large effect of PM2.5 on BMI. Our preferred 

specification, column (2), shows that a 1 µg/m3 (1.54%) increase in average PM2.5 

concentrations in the past 12 months increases BMI by 0.0625 units (0.27%). This 

corresponds to an elasticity between PM2.5 and BMI of 0.18. We can also convert the 

magnitude using standard deviations. The point estimates indicate that a one standard 

deviation increase in PM2.5 concentrations increases the BMI by 0.50 standard 

deviations.  

      Second, air pollution increases the probability of being overweight and obese. 

Columns (4) and (6) report that a 1 µg/m3 increase in average PM2.5 concentrations in 

the past 12 months increases the probability of being overweight by 0.82 percentage 

points, or 3.57 percent of the mean, and being obese by 0.27 percentage points, or 

9.54 percent of the mean. In other words, a one standard deviation increase in PM2.5 in 

the past 12 months increases the probability of being overweight and obese by 0.53 

and 0.44 standard deviations respectively.   

      Third, considering the standard errors, the 2SLS point estimates are similar 

between the model with year fixed effects and year-by-month fixed effects, thereby 

suggesting that residual seasonality in air pollution and determinants of body weight 

does not confound our estimation strategy. Recall that most interviews were 
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conducted in the Fall, and thus we mainly use year-to-year variation, instead of 

season-to-season variation across years.  

      Lastly, the OLS estimates in Panel B are remarkably smaller in magnitude 

compared to the 2SLS estimates in Panel A. This underscores the importance of 

instrumenting for air pollution as confounders and measurement error may have 

biased the OLS estimates downwards.  

5.3 Robustness checks 

      We report the results of various robustness checks in Tables 4A and 4B. 

Column (1) is the baseline model, in which we use year-by-month fixed effects to 

control for nation-wide year-month shocks. In column (2), we replace the 

year-by-month fixed effects with date fixed effects as a more flexible control for 

unobserved China-wide temporal shocks. The corresponding point estimates and 

standard errors are relatively larger. In column (3), we return to year-by-month fixed 

effects and add county-specific linear and quadratic time trends. The estimates are 

qualitatively similar. 

      Our baseline model includes weather variables in flexible specifications. This 

is to satisfy the exclusion restriction and ensure that air pollution is the only channel 

through which thermal inversions affect body weight. In column (4), we exclude 

weather controls and the magnitude and statistical significance of the estimated 

coefficients is essentially unchanged.  
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      In column (5), we add additional control variables, including log of household 

expenditures and income, job and marriage status. The estimates change little, 

suggesting that our instrument is not correlated with household economic conditions16. 

In Table A1 in the Online Appendix, we conduct placebo tests in which we use these 

controls as dependent variables. As expected, we find insignificant impacts of air 

pollution.    

      Our baseline exposure window is 12 months, and we include the current 

month of the interview. For example, if an individual was interviewed on June 15 

2000, we construct the exposure window from July 1999 to June 2000. In column (6), 

we drop the current month, and construct the exposure window from June 1999 to 

May 2000. This change in the exposure window does not lead to a meaningful change 

in the estimates.  

      Column (7) tests the robustness of our IV construction. In our baseline model, 

we define thermal inversions using the temperature difference between the first (110 

meters) and the second layers (320 layers). In column (7), we replace the second layer 

with the third layer (540 meters). The results are very similar. 

      We then test the robustness of excluding extreme values of BMI from the 

sample in column (8) of Table 4B. Specifically, we winsorize the top and bottom 0.5% 

observations. After this, the maximum and minimum BMI are 33.53 and 16.08, in 

contrast to 63.78 and 9.03 before winsorizing.  

                                                 
16 We do not include these controls variables in our baseline model because they may be 

endogenous to air pollution.  
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      Our baseline sample dropped pregnant women because their body weights 

largely increased during pregnancy and thus their BMI are not indicative for 

overweight and obesity. Nevertheless, we include these pregnant women in the 

estimation in column (9). Our estimates change little.  

      We construct the pollution exposure based on the county of residence. One 

concern is that people may reside in one county but work in another county. 

Unfortunately, the CHNS does not report the county of work place. We use two ways 

to address this concern. First, we collapse the data at prefecture level, which typically 

contains 5–15 counties. This captures any within-prefecture movement. It may be 

unlikely that people work and reside in different prefectures. The results are presented 

in column (10) and remain robust. Second, we only focus on rural counties, and 

exclude urban districts from the estimation, since people in rural counties are more 

likely to work and reside in the same county. Again, our results are robust, as shown 

in column (11).   

      The definitions for overweight (BMI>=25) and obesity (BMI>=30) are taken 

from the WHO, which are derived mainly from Western populations. Zhou (2002) 

proposed that the BMI cutoff of 24 for overweight and 28 for obesity is more 

appropriate for the Chinese populations. Using these new cutoffs, the average 

overweight and obesity rates in our sample are 31.67% and 7.09% respectively, larger 

than the WHO cutoff (23.00% and 2.83% respectively). Column (12) reports the 

estimates using the new standards. The effect on overweight is very similar to the 
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baseline model. However, we find a much larger effect on obesity. This is intuitive 

because the mean obesity rate using the new cutoff is higher.  

      Our BMI measure is derived from body weight and height. In columns (13) 

and (14), we estimate the effect of air pollution on body weight and height separately. 

As expected, we find a statistically significant effect of PM2.5 on body weight. 

Specifically, a 1 µg/m3 increase in PM2.5 concentrations increases the body weight by 

0.2012 kg, or 0.34% (mean=58.47 kg). On the contrary, the effect on body height is 

statistically insignificant. This provides a placebo test for confounders. Since our 

sample only includes adults (age>=18), their body heights should not change in 

response to air pollution.  

Finally, in column (15), we use the 12 months after the interview as the 

exposure window to conduct a falsification test. As expected, the estimates are 

insignificant, suggesting that unobserved secular trends do not confound our results.  

      Table A2 in the Online Appendix reports the estimates under different 

assumptions on the clustering of the standard errors. Column (1) is the baseline model, 

with two-way clustering and clustered standard errors at the individual and 

county-year-month levels. In column (2), we keep the individual clustering and 

change the county-year-month to county-year clustering, which allows for 

autocorrelation in the errors within a county-year cell. In column (3), we further 

aggregate the clustering level from county-year to county. This controls for any 

autocorrelation within each county across years. In column (4), we use two-way 

clustering at the county and year level. In the last two columns, we employ the 
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one-way clustering and cluster at county-year and county level, respectively. Our 

results are generally significant at the 5% level for most specifications.   

5.4 Alternative exposure windows 

      In this section, we explore the effects of different exposure windows. The 

baseline model uses a 12-month exposure window. In Figure 5, we vary the exposure 

window from the past month to the past 18 months. The dependent variables are BMI 

in Panel A, and the overweight and obesity indicators in Panels B and C. The point 

estimates are denoted by dots and the 95% confidence intervals are denoted by 

whiskers.  

      The estimated effects of air pollution for the one- to three-month exposure 

windows are close to zero and statistically insignificant at the 5% level. The 95% 

confidence intervals become very large when the exposure windows extend from four 

to nine months. This is mainly because the first-stage relationship between thermal 

inversions and air pollution is weak due to differential seasonality in interview times 

and natural occurrence of thermal inversions (Figures A3 and A4 in the Online 

Appendix).    

      When we further extend the exposure windows from 10 to 18 months, the 

confidence intervals shrink again, and the estimated coefficients are statistically 

significant for the exposure window of 11–13 months at the 5% level. It appears from 

this analysis that exposure to air pollution over the course of several months is 

necessary to cause an increase in body weight. The relatively precise “zero” estimates 



 

25 

 

in the first three months lead us to conclude cautiously that the pollution effect is not 

contemporaneous, or at least not within the three months.  

  5.5 Mechanism tests 

      Section 2 discussed several mechanisms through which air pollution may 

affect body weight. Although we cannot test the biological channel (slowing down the 

metabolism), we test several behavioral channels, including the amount of time in 

physical and sedentary activities, whether an individual walks to work or school, sleep 

time, and nutrition intake. Note that these behavioral responses were collected in 

reference to a short period (week or days) before the interview. However, our air 

pollution data are only available at monthly level. We thus use the reduced-form 

estimates, i.e., regress thermal inversions on these behavior responses in the 

corresponding exposure windows17. We also differentiate the response by urban and 

rural residents.   

      We start with physical activity in columns (1) to (3) in Table 5A. The survey 

asked how many minutes a respondent spent on Kung Fu, gymnastics, dancing, 

acrobatics, and sports in the past week. We regress time spent in physical activity on 

thermal inversions in the week prior to the interview, using the same controls in 

Equation (1). Since more than 90% of observations report zero minutes of physical 

activity, these estimates should be interpreted with caution. Nevertheless, we find a 

                                                 
17 We present the reduced-form estimates on BMI in Table A3 in the Online Appendix.  
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weakly negative effect of thermal inversion on physical activity for urban residents, 

but not for rural residents.  

      We then turn to sedentary activities in columns (4) to (6), which include 

minutes watching TV, playing computer games, reading, writing, and drawing in the 

past week. We do not find a statistically significant effect on sedentary activities for 

either urban or rural residents.  

      Next, we focus on an indicator for walking to work/school in columns (7) to 

(9). In particular, the dependent variable is whether an individual walked to work or 

school in past three days. We find that more inversions (higher pollution) reduced the 

probability of walking to work/school for urban residents.  

      We then examine the effect of inversions on sleep time in columns (10) to (12) 

of Table 5B. We find that more thermal inversions lead to reduction in sleep time in 

the same day. This finding is consistent with Heyes and Zhu (2019), which also 

focuses on China using social media-based data. We find that the effect is mainly 

significant for rural residents. The insignificant although negative effect for urban 

residents may be due to a smaller sample size.   

      We next focus on food intake. The CHNS recorded detailed information on 

total calories consumed in different categories during past three days. In general, we 

find that air pollution increases fat intake for urban residents (column (17) of Table 

5B).  

      To sum up, we find that air pollution reduces minutes of physical activity, the 

probability of walking to work/school, hours of sleep, and increases fat intake. These 
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behaviors could increase calorie intake while decrease calorie consumption, and 

eventually lead to an increased likelihood of overweight and obesity.  

  5.6 Heterogeneity analysis 

      In this section, we conduct a series of heterogeneity analysis by gender, age, 

education, and urban/rural residency. To show whether there is a statistically 

significant difference between subgroups, we interact the dummy or categorical 

variable for subgroups with thermal inversions. We do not interact with air pollution 

because we only have one instrumental variable, which is insufficient to instrument 

both air pollution and the interaction term.  

      Table 6 reports the point estimates and standard errors. For brevity, we only 

report estimates where BMI is the dependent variable. In column (1), we interact 

inversions with a dummy variable, which equals 1 for male and 0 for female. In 

column (2), we interact inversions with age, which is a continuous variable. We then 

interact inversions with education, which is measured by 7 categories, with the larger 

number indicating higher education in column (3). In the last column, we interact 

inversions with a dummy variable, which equals 1 for urban residents and 0 for rural 

residents. Overall, we do not find statistically significant difference on the effect of 

inversion/pollution across gender, age, education, and urban/rural residency.  
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6 Discussion  

      This paper documents a statistically significant and positive effect of air 

pollution on BMI, overweight, and obesity rates in China. In this section, we compare 

our estimates with those from two strands of the literature: those estimating the 

economic cost of air pollution and those estimating the causes of obesity. In the last 

two subsections, we discuss the policy implications and research caveats as well as 

future research directions. 

6.1 Comparison with the literature on estimating the economic 

cost of air pollution 

      Overweightness and obesity can lead to a variety of chronic diseases such as 

diabetes, cardiovascular and kidney diseases, and some cancers, and therefore 

contribute considerably to social medical costs. To shed light on the economic cost of 

air pollution on overweight and obesity, we perform a back-of-the-envelope 

calculation using the estimated response to a 1 µg/m3 increase in PM2.5 concentrations, 

multiplying by the per-capita health expenditure attributable to overweight and 

obesity.    

      Qin and Pan (2015) estimate that overweight and obese people account for 

5.29% of total personal health expenditure in China during 2000–2009. In 2016, the 

per-capita health expenditure in China was CNY 3,784 (China Statistical Yearbook, 

2017), and thus the overweight/obesity-related health expenditure per capita was 

CNY 200. Since we find that a 1 µg/m3 increase in average PM2.5 concentrations 
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increases the prevalence of overweight (including obesity) by 0.82 percentage points 

(column (4) of Table 3), we can conclude that this increase in PM2.5 concentrations 

induces a per-capita health cost of CNY 1.64 (200*0.0082) on average, and a total 

health cost of CNY 1.89 billion (1.64*1.15 billion adults), or USD 0.27 billion on 

overweight and obesity-related medical costs.   

      We can also compare our estimates with previous studies that estimate the 

effect of PM2.5 on other economic variables. Deryugina et al. (2019) find that a 1 

µg/m3 decrease in PM2.5 brings an annual benefit of USD 4.11 billion in terms of 

avoided mortality in the U.S., which is 15 times larger than our estimate. Fu et al. 

(2017) and Chang et al. (2019) find that a 1 µg/m3 decrease in PM2.5 increases labor 

productivity in China by USD 2.99 billion and in the U.S. by USD 6.99 annually, 

which is 11 and 26 times larger than our estimate respectively.  

      To sum up, our study suggests that the cost of air pollution on overweight and 

obesity are non-trivial. In addition, we may underestimate the costs for two reasons. 

First, we only focus on medical costs, but researchers have found that obesity has 

wide impacts on economic outcomes, including wages (Cawley, 2004) and 

employment (Rooth, 2009). Second, the estimated percent of medical cost attributable 

to overweight and obesity in Qin and Pan (2015) was calculated during the period of 

2000–2009. Since the prevalence of overweight and obesity is increasing in China, the 

related medical cost will also be likely to increase in the future.  
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6.2 Comparison with the literature on estimating the causes of 

obesity 

      In the past several decades, the prevalence of overweight and obesity has 

increased significantly in the U.S. and other developed countries (National Center for 

Health Statistics, 2014; OECD, 2014). Therefore, economists have devoted 

considerable attention to understand the economic causes of obesity (see Cawley 

(2015) for a literature review). We compare our estimates with three prevalent studies 

that focus on important economic causes of obesity, including fast food restaurants, 

education, and peer and neighborhood effects. Since these studies focused on the U.S. 

and Europe while we focus on China, the comparison is only suggestive.   

      First, we compare our estimates with Currie et al. (2010), who estimate the 

effect of fast food restaurants on obesity rates in the U.S. They find that the presence 

of a fast food restaurant within 0.1 miles of a school increases the obesity rates by 5.2 

percent for the ninth graders. This effect is smaller to the increase of average PM2.5 

concentrations by 1 µg/m3, as we find that a 1 µg/m3 increases the obesity rate by 0.27 

percentage points, or 9.54 percent.  

      Second, we compare our estimates with Brunello et al. (2013), who investigate 

the effect of education on obesity in Europe. They find an insignificant impact of 

schooling on obesity for males. However, the effect is significantly positive for 

females. Specifically, a 1 additional year of schooling reduces the prevalence of 

obesity by 14.83 percent for women. As we do not find statistically significant gender 

differences in response to air pollution, we use our estimate for the whole sample. 
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Therefore, we can conclude that a 1 additional year of schooling has a similar effect 

with a decrease of PM2.5 concentrations by around 1.55 (14.83/9.54) µg/m3.  

      Lastly, we focus on peer and neighborhood effects. Using the Moving to 

Opportunity program as an experiment, Kling et al. (2007) find that moving to a 

low-poverty neighborhood reduces the probability of obesity by 4.8 percentage points 

relative to the control group in the U.S. This reduction is equivalent to reducing PM2.5 

concentrations by 17.78 µg/m3. In summary, we find that the impact of air pollution 

on obesity in China is meaningful and comparable to other economic causes.  

   6.3 Policy implications 

      Many developing countries have remarkably poor air quality, which is often 

considered as one of the first-order obstacles to economic development. In China, 

Premier Li Keqiang has declared “The War against Air Pollution” and many acts and 

regulations have been promulgated to reduce air pollution.  

      On the other hand, the Chinese government has begun to realize the increasing 

prevalence of overweight and obesity and the associated economic burden in China, 

and therefore have implemented several policies on obesity prevention and control. 

For example, in 2003, the Bureau of Disease Control issued the Guidelines for 

Prevention and Control of Overweight and Obesity of Chinese Adults. In 2013, the 

nutrient information should be included on labels. Taken together, our study shows 

that reducing air pollution could be an important and effective strategy to reduce 
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overweight and obesity in China, and could have large benefits in terms of avoided 

health expenditure on overweight and obesity.    

 6.4 Caveats and future research direction 

      At least one caveat exists in our study. Due to the research design, i.e., using 

thermal inversions as the IV for PM2.5, we cannot identify the effect of PM2.5 per se, 

because air pollutants are highly correlated with one another, and thermal inversions 

could also affect other air pollutants, such as PM10, CO, and O3 (Arceo et al., 2016). 

Therefore, it is better to interpret our estimates as the effect of air pollution, instead of 

PM2.5 per se, on body weight.  

      Although our focus is on China, our methods are general and could be applied 

to other countries. In fact, it is not clear whether air pollution will affect body weight 

in a different context, e.g., for developed countries. Even so, it remains unknown 

about the magnitude, which may differ because exposure to air pollution, and the 

behavioral and biological responses are different across countries. We leave this for 

future research.    
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Figure 1. Trends of PM2.5, GDP, and Body Weight in China during 1989–2015 

 

Panel A Panel B 

  

Panel C Panel D 

 
 

Notes: This figure shows the annual average of PM2.5 concentrations and GDP (Panel A), 

average BMI (Panel B), the prevalence of overweight (BMI>=25, Panel C), and obesity 

(BMI>=30, Panel D) for adults (age>=18) in China during 1989-2015. The data on GDP are 

from the National Bureau of Statistics of China and are deflated using the 2010 constant dollars. 

The data on PM2.5 are from the NASA. The data on BMI, overweight, and obesity are from the 

China Health and Nutrition Survey. PM2.5 is the average for the whole country, and BMI, 

overweight, and obesity are the average for the 71 counties/districts across eight provinces in 

the sample.  
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Figure 2. Trends of Thermal Inversions and GDP in China during 1989–2015 

 

Notes: This figure shows the national trends of thermal inversion and GDP between 1989 and 

2015. GDP is deflated to 2010 constant dollars.  
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Figure 3. Within-county Change in GDP and Thermal Inversions in China 

between 1999–2014 

 
Notes: This figure plots the within-county change in GDP and thermal inversions in China 

between 1999 and 2014. GDP is deflated to 1999 constant billion dollars.  
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Figure 4. Histogram of BMI in China during 1989–2015 

 

Notes: This figure plots the histogram of BMI. The vertical red line indicates the cutoff of 25, 

which is used to define overweight. The vertical green line indicates the cutoff of 30, which is 

used to define obesity.  
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Figure 5. Impacts of PM2.5 on Body Weight 

Panel A Panel B Panel C 

   

Notes: This figure depicts the impacts of PM2.5 on the BMI (Panel A), overweight (Panel B), and obesity (Panel C). The model is estimated using Equation (1). 

PM2.5 is calculated using average concentrations from the month of the interview to the past 18 months. The circle denotes the point estimate, and the whisker 

denotes the 95% confidence intervals. Standard errors are clustered at individual and county-year-month level (two-way clustering). 
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Table 1. Summary Statistics 

Variable Description N Mean SD Min Max 

Body mass measure 
      

BMI  weight/height2 (kg/m2) 65,525 22.76 3.37 4.83 63.78 

Percent Overweight BMI>=25 65,525 23.00 42.08 0 100 

Percent Obese BMI>=30 65,525 2.83 16.59 0 100 

Weight kg 65,525 58.47 10.81 15 162.7 

Height cm 65,525 160.03 8.46 125 190 

 Male 
 

     

 BMI  weight/height2 (kg/m2) 31,499 22.59 3.25 4.83 57.01 

 Percent Overweight BMI>=25 31,499 21.19 40.86 0 100 

 Percent Obese BMI>=30 31,499 2.22 14.72 0 100 

 Weight kg 31,499 62.29 10.78 15 162.7 

 Height cm 31,499 165.81 6.50 138.5 190 

 Female 
 

     

 BMI  weight/height2 (kg/m2) 34,026 22.92 3.48 9.03 63.78 

 Percent Overweight BMI>=25 34,026 24.68 43.12 0 100 

 Percent Obese BMI>=30 34,026 3.41 18.14 0 100 

 Weight kg 34,026 54.94 9.57 19.7 156.8 

 Height cm 34,026 154.67 6.25 125 179 

  
     

Air pollution 
 

     

PM2.5 µg/m3 65,525 64.75 26.99 23.75 141.32 

  
     

Thermal inversions 
 

     

inversions 

Times in 12 months  

65,525 267.95 116.98 71 578 

(defined over 6-hour 

intervals) 

Notes: Unit of observation is individual-year. The survey covered 13,741 adult individuals (age>=18) 

from 71 counties across eight provinces during 1989-2015 in China. The BMI is calculated using the 

weight (kg) divided by squared height (m2). Overweight is a dummy variable which equals one if 

BMI>=25. Obesity is a dummy variable which equals one if BMI>=30. PM2.5 is average concentration 

in the 12-month exposure window. Thermal inversion is determined within each six-hour period, and 

then aggregated to the 12-month exposure window.  
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Table 2. First-stage Estimation: Effects of Thermal Inversions on PM2.5 

 
PM2.5   

  (1) (2) (3) 

Thermal inversions 

   
 

0.0246*** 0.0239*** 0.0288*** 

  (0.0064) (0.0064) (0.0062) 

Individual FE Yes Yes Yes 

Year FE Yes No No 

Year-by-month FE No Yes Yes 

Weather controls No No Yes 

KP F-statistics 15.02 14.08  21.62  

Notes: N=65,525. The dependent variable is average monthly PM2.5 concentrations over the 12-month 

exposure window. Thermal inversions are aggregated from each 6-hour to 12 months. Weather 

controls include 5°C temperature bins, second-order polynomials in average relative humidity, wind 

speed, sunshine duration, and cumulative precipitation. Standard errors listed in parentheses are 

clustered at individual and county-year-month level (two-way clustering). *** p<0.01, ** p<0.05, * 

p<0.1. 
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Table 3. Second-stage Estimation: Effects of Air Pollution on Body Mass 

 

BMI  

 

Overweight 

 

Obesity 

  (1) (2)   (3) (4)   (5) (6) 

Panel A: IV 

        PM2.5 0.0422** 0.0625*** 

 

0.0061** 0.0082*** 

 

0.0021** 0.0027** 

 

(0.0213) (0.0234) 

 

(0.0027) (0.0031) 

 

(0.0010) (0.0011) 

KP F-statistics 23.59 21.62   23.59 21.62   23.59 21.62 

Panel B: OLS 
        

PM2.5 -0.0035 -0.0038 

 

-0.0004 -0.0005 

 

-0.0003 -0.0003 

 

(0.0037) (0.0035) 

 

(0.0005) (0.0005) 

 

(0.0002) (0.0002) 

                  

Individual FE Yes Yes 
 

Yes Yes 
 

Yes Yes 

Year FE Yes No 
 

Yes No 
 

Yes No 

Year-by-month FE No Yes 
 

No Yes 
 

No Yes 

Weather Controls Yes Yes   Yes Yes   Yes Yes 

Notes: N=65,525. The dependent variables are: BMI in columns (1)–(2), an overweight indicator in columns (3)–(4), and an obesity indicator in columns (5)–

(6). Panel A reports 2SLS estimates, in which we use number of thermal inversions as an instrument for PM2.5. Panel B reports the fixed-effect estimates in 

which air pollution is not instrumented. Weather controls include 5 °C temperature bins, second-order polynomials in average relative humidity, wind speed, 

and sunshine duration, and cumulative precipitation. Standard errors in parentheses are clustered at individual and county-year-month level (two-way 

clustering). *** p<0.01, ** p<0.05, * p<0.1. 
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Table 4A. Robustness Checks 

 
Baseline  

 
Date FE 

 

Add county 

quadratic 

trends 
 

No Weather 

Controls  

Add individual 

and household 

controls 
 

Exclude 

current 

Month 
 

Alternative 

layers for IV 

  (1)   (2)   (3)   (4)   (5)   (6) 
 

(7) 

Panel A: BMI 
             

PM2.5 0.0625*** 

 

0.1003** 

 

0.0658** 

 

0.0778*** 

 

0.0660*** 
 

0.0632** 
 

0.0734** 

  (0.0234)   (0.0426)   (0.0276)   (0.0295)   (0.0243)   (0.0252) 
 

(0.0298) 

Panel B: Overweight (0/1) 
            

PM2.5 0.0082*** 

 

0.0137** 

 

0.0068* 

 

0.0114*** 

 

0.0088*** 
 

0.0090** 
 

0.0107*** 

 
(0.0031) 

 

(0.0058) 

 

(0.0036) 

 

(0.0043) 

 

(0.0033)   (0.0035) 
 

(0.0040) 

Panel C: Obesity (0/1)               
  

  
  

PM2.5 0.0027** 

 

0.0039* 

 

0.0017 

 

0.0027** 

 

0.0029** 

 

0.0031** 
 

0.0025* 

  (0.0011)   (0.0020)   (0.0011)   (0.0013)   (0.0012)   (0.0013) 
 

(0.0014) 

KP F-statistics 21.62 

 

12.56 

 

27.84 

 

14.08 

 

20.84 
 

18.58 
 

13.92 

Observations 65,525   65,525   65,525   65,525   63,487   65,525 
 

65,525 

Notes: The dependent variables are: BMI in Panel A, an overweight indicator in Panel B, and an obesity indicator in Panel C. Column (1) is the baseline 

model and uses year-by-month fixed effect. Column (2) replaces year-by-month fixed effects with date fixed effects. Column (3) controls for county-specific 

liner and quadratic time trends. Column (4) excludes weather controls. Column (5) includes controls for household expenditure and income, and dummies for 

employment and marital status. Column (6) excludes the current month to construct the exposure window. Column (7) changes the instrumental variables by 

coding thermal inversions with the temperature difference between the first (110 meters) and the third layers (540 meters). *** p<0.01, ** p<0.05, * p<0.1. 
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Table 4B. Robustness Checks 

 
Winsorize 

 

Include 

pregnant 

women 
 

Prefecture 

level  

Only rural 

counties  

Cutoff 

change  

Body 

weight  

Body 

height  

Lead 12 

months  

 
(8)   (9)   (10)   (11)   (12)   (13)   (14)   (15) 

Panel A: BMI 
         

  
     

PM2.5 0.0566** 
 

0.0595** 
 

0.1036*** 
 

0.0442** 
 

- 
 

0.2012*** 

 

0.0464 

 

0.1467 

  (0.0219)   (0.0232)   (0.0333)   (0.0183)   -   (0.0646)   (0.0334)   (0.3172) 

Panel B: Overweight (0/1) 
             

PM2.5 0.0080** 
 

0.0078** 
 

0.0100*** 
 

0.0070*** 
 

0.0063** 
 

- 
 

- 
 

-0.0022 

 
(0.0031)   (0.0031)   (0.0039)   (0.0026)   (0.0032)   -   -   (0.0188) 

Panel C: Obesity (0/1) 
       

 
      

PM2.5 0.0026** 
 

0.0025** 
 

0.0042*** 
 

0.0023** 
 

0.0051** 
 

- 
 

- 
 

0.0023 

  (0.0011)   (0.0011)   (0.0016)   (0.0009)   (0.0020)   -   -   (0.0104) 

KP F-statistics 21.66 

 

21.72 
 

16.99 
 

26.89 
 

21.62 
 

21.62 
 

21.62 

 

0.45 

Observations 64,803   66,324   65,525   46,133   65,525   65,525   65,525   65,525 

Notes: Column (8) drops the top and bottom 0.5% observations of the BMI. Column (9) adds pregnant women to the sample. Column (10) collapses data at 

prefecture level, which usually includes 5 to 15 counties. Column (11) restricts the sample to rural counties, and exclude urban districts. Column (12) reports 

the estimates with new BMI cutoff of 24 for overweight and 28 for obesity. Columns (13)–(14) estimate the effect of air pollution on body weight and height 

separately. Column (15) uses the lead 12 months as the exposure window. *** p<0.01, ** p<0.05, * p<0.1.  
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Table 5A. Air Pollution Effects on Activities          

 

Activities 

 

Walk to Work/School 

 

 Physical activity                         

(past week)  

Sedentary activity                 

(past week) 

 

            (past 3 days) 

 

mins 

 

mins 

 

yes/no (1/0) 

 

(1) (2) (3) 

 

(4) (5) (6) 

 

(7) (8) (9) 

  Full Urban  Rural   Full Urban  Rural   Full Urban  Rural 

Thermal inversions  -0.3521 -0.9347* -0.2927 

 

-0.4392 -0.6726 -0.3775 

 

-0.0040 -0.0174*** -0.0016 

 

(0.2489) (0.5637) (0.2567) 

 

(0.7474) (1.7229) (0.8154) 

 

(0.0034) (0.0059) (0.0039) 

            

Mean of Dep. Var. 17.64 32.61 11.61 

 

312.20 376.28 286.52 

 

0.51 0.40 0.54 

Mean of Inversions 5.40 5.63 5.31   5.16 5.39 5.06 
  

2.15 2.25 2.12 

Observations 43,058 12,349 30,709 

 

29,886 8,548 21,338 

 

16,395 3,463 12,932 

% of zeros 91.62 83.48 94.90 
 

6.60 4.40 7.48 

 

48.80 59.77 45.86 

# of individual 10,512 3,261 7,251   8,796 2,661 6,135   5,463 1,240 4,223 

Notes: The dependent variables are physical activities (minutes) in columns (1)–(3), sedentary activities (minutes) in columns (4)–(6) in the past week, and an 

indicator that equals 1 if an individual walked to work/school in columns (7)–(9) for past 3 days. Physical activity includes martial arts such as Kung Fu, 

gymnastics/dancing/acrobatics, running/swimming, soccer/basketball/tennis, badminton/volleyball, and others such as table tennis and Tai Chi. Sedentary 

activities include watching TV, watching videotapes/VCD/DVD, playing video games, surfing the internet, online chatting, playing computer games, and 

reading/writing/drawing. Reduced-form regression models are estimated separately for a full sample and by urban and rural residents. The exposure window is 

past 7 days for physical and sedentary activities, and past 3 days for walk to work/school prior to the interview. Weather controls include 5 °C temperature 

bins, second-order polynomials in average relative humidity, wind speed, and sunshine duration, and cumulative precipitation. Standard errors listed in 

parentheses are clustered at individual and county-year-month level (two-way clustering). *** p<0.01, ** p<0.05, * p<0.1. 
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Table 5B. Air Pollution Effects on Activities and Nutrition Intake         

 

Sleep 

 

Nutrition Intake 

 

Bedtime                             

(past day) 

 

Carbo                                      

(past 3 days) 

 

Fat                                            

(past 3 days) 

 

hours 

 

g 

 

g 

 

(10) (11) (12) 

 

(13) (14) (15) 

 

(16) (17) (18) 

 

Full Urban  Rural   Full Urban  Rural 

 

Full Urban  Rural 

Thermal inversions  -0.0385** -0.0062 -0.0534*** 

 

0.3913 -1.1846 0.6003 

 

0.1342 0.9348** -0.1590 

 

(0.0151) (0.0275) (0.0178) 

 

(0.8315) (1.3116) (0.9130) 

 

(0.2366) (0.3716) (0.2711) 

Mean of Dep.Var 7.99 7.83 8.05 

 

345.65 300.21 365.18 

 

69.57 77.02 66.36 

Mean of Thermal 

Inversions 
0.77 0.76 0.77 

  
2.32 2.34 2.31 

 

2.32 2.34 2.31 

Observations 31,062 8,942 22,120 

 

54,330 16,335 37,995 

 

54,330 16,335 37,995 

% of zeros 0 0 0 

 

0 0 0 

 

0 0 0 

# of individual 9,006 2,737 6,269   12,510 4,143 8,367 

 

12,510 4,143 8,367 

Notes: The dependent variables are bedtime in hours in the past day in columns (10)–(12), carbohydrate (grams) intake in columns (13)–(15), and fat (grams) 

intake in columns (16)–(18) for past three days. Reduced-form regression models are estimated separately for a full sample and by urban and rural residents. 

The exposure window is past 1 day for sleep and past 3 days for carbohydrate and fat intake prior to the interview. Weather controls include 5 °C temperature 

bins, second-order polynomials in average relative humidity, wind speed, and sunshine duration, and cumulative precipitation. Standard errors listed in 

parentheses are clustered at individual and county-year-month level (two-way clustering). *** p<0.01, ** p<0.05, * p<0.1. 
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Table 6. Heterogeneity Analysis   

 
BMI  

  (1) (2) (3) (4) 

Inversions 0.0014 

   
 

(0.0011) 

   Male * Inversions 0.0003 

   
 

(0.0006) 

   Inversions 

 

0.0021* 

  
 

 

(0.0011) 

  Age * Inversions 

 

-0.0000 

  

  

(0.0000) 

  Inversions 

  

0.0016** 

 
 

  

(0.0006) 

 Education * Inversions 

 

0.0002 

 
 

  

(0.0002) 

 Inversions 

   

0.0014** 

 
   

(0.0006) 

Urban * Inversions 

  

0.0015 

 
   

(0.0009) 

     Observations 65,525 65,525 63,627 65,525 

R-squared 0.1747 0.1747 0.1740  0.1747 

Individual FE Yes Yes Yes Yes 

Year-by-month FE Yes Yes Yes Yes 

Weather Controls Yes Yes Yes Yes 

Notes: The dependent variable is BMI. Column (1) contains a dummy of gender (equals 1 if an 

individual is male) and an interaction between male and inversions. Column (2) contains individual’s 

age and an interaction between age and inversions. Column (3) contains individual’s education level 

(0: no school; 1: primary school; 2: junior high school; 3: high school; 4: technical or vocational 

school; 5: college or university; 6: master or above) and an interaction term for education and an 

interaction between education and inversions. Column (4) contains a dummy of residency (equals 1 if 

an individual lives in urban areas) and an interaction term between residency and inversions. Weather 

controls include 5 °C temperature bins, second-order polynomials in average relative humidity, wind 

speed, and sunshine duration, and cumulative precipitation. Standard errors in parentheses are 

clustered at individual and county-year-month (two-way clustering). *** p<0.01, ** p<0.05, * p<0.1. 
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Online Appendix 

 

Figure A1. Number of Interviewees across Years 

 
Notes: This figure plots the number of interviewees in each survey year (1989–2015).  
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Figure A2. Frequency of Interviewees 

 

Notes: This figure plots the frequency in years for number of interviewees. 
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Figure A3. Number of Interviewees across Months 

 
Notes: This figure plots the aggregate number of interviewees across months.  
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Figure A4. Average of Thermal Inversions across Months 

 

Notes: This figure plots the average number of monthly cumulative thermal inversions for all 71 

counties across months.  
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Table A1. Effects of Air Pollution on Log of Household Income and Expenditure, and 

Individual Employment and Marital Status 

 

Log HH 

income  

Log HH 

expenditure  

If 

employed  

If 

married 

  (1)   (2)   (3)   (4) 

        
PM2.5 0.0132 

 
0.0414 

 
0.0025 

 
-0.0028 

 
(0.0174) 

 
(0.0387) 

 
(0.0053) 

 
(0.0021) 

        
Individual FE Yes 

 
Yes 

 
Yes 

 
Yes 

Year-by-month 

FE 
Yes 

 
Yes 

 
Yes 

 
Yes 

Weather Controls Yes 
 

Yes 
 

Yes 
 

Yes 

KP F-statistic 21.90 
 

21.84 
 

21.49 
 

20.84 

Observations 64,461   64,690   65,288   64,872 

Notes: The dependent variables are log of household income in column (1), log of household 

expenditure in column (2), if employed in column (3), and if married in column (4). 2SLS estimates 

are reported, in which we use number of thermal inversions as an instrument for PM2.5. Weather 

controls include 5 °C temperature bins, second-order polynomials in average relative humidity, wind 

speed, and sunshine duration, and cumulative precipitation. Standard errors in parentheses are 

clustered at individual and county-year-month level (two-way clustering). *** p<0.01, ** p<0.05, * 

p<0.1. 
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Table A2. Robustness Checks on Clustering of Standard Errors 

 

Two-way: 

Individual and 

county-year-month 
 

Two-way: 

Individual and 

county-year 
 

Two-way:        

Individual and 

county 
 

Two-way:     

County and           

year 
 

One-way: 

County-year  

One-way:      

County 

  (1)   (2)   (3)   (4)   (5)   (6) 

Panel A: BMI 
 

  

PM2.5 0.0625*** 
 

0.0625*** 
 

0.0625** 
 

0.0625** 
 

0.0625** 
 

0.0625** 

 
(0.0234) 

 
(0.0239) 

 
(0.0298) 

 
(0.0268) 

 
(0.0258) 

 
(0.0298) 

Panel B: Overweight (0/1)     

PM2.5 0.0082*** 
 

0.0082** 
 

0.0082** 
 

0.0082** 
 

0.0082** 
 

0.0082** 

 
(0.0031) 

 
(0.0033) 

 
(0.0036) 

 
(0.0029) 

 
(0.0035) 

 
(0.0036) 

Panel C: Obesity (0/1)     

PM2.5 0.0027** 
 

0.0027** 
 

0.0027** 
 

0.0027** 
 

0.0027** 
 

0.0027** 

  (0.0011)   (0.0011)   (0.0011)   (0.0010)   (0.0012)   (0.0011) 

KP F-statistics 21.62   19.10   12.57   11.18   15.16   12.57 

Notes: N=65,525. The dependent variables are: BMI in Panel A, an indicator variable for overweight in Panel B, and an indicator variable for obesity in Panel 

C. Column (1) is the baseline model and uses the two-way clustering: individual and county-year-month. Column (2) uses two-way clustering: individual and 

county-year. Column (3) uses two-way clustering: individual and county. Column (4) uses two-way clustering: individual and year. Column (5) uses one-way 

clustering: county-year. Column (6) uses one-way clustering: county. All models include individual fixed effects, year-by-month fixed effects, and weather 

controls. *** p<0.01, ** p<0.05, * p<0.1. 
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Table A3. Reduced-Form Estimation: Effects of Thermal Inversions on Body Mass 

 

BMI  

 

Overweight 

 

Obesity 

  (1) (2)   (3) (4)   (5) (6) 

 
        

Thermal Inversions  0.0013** 0.0018*** 
 

0.0002** 0.0002*** 
 

0.0001** 0.0001*** 

 

(0.0006) (0.0005) 
 

(0.0001) (0.0001) 
 

(0.0000) (0.0000) 

                  

Individual FE Yes Yes 
 

Yes Yes 
 

Yes Yes 

Year FE Yes No 
 

Yes No 
 

Yes No 

Year-by-month FE No Yes 
 

No Yes 
 

No Yes 

Weather Controls Yes Yes   Yes Yes   Yes Yes 

Notes: N=65,525. The dependent variables are: BMI in columns (1)–(2), an overweight indicator in columns (3)–(4), and an obesity indicator in columns (5)–

(6). Weather controls include 5 °C temperature bins, second-order polynomials in average relative humidity, wind speed, and sunshine duration, and 

cumulative precipitation. Standard errors in parentheses are clustered at individual and county-year-month level (two-way clustering). *** p<0.01, ** p<0.05, 

* p<0.1. 

 


