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Abstract 

The extent of trans-boundary pollution spillovers versus local effects is a necessary input in 
evaluating centralized versus decentralized environmental policies. We develop an estimation 
approach allowing for a flexible relationship between pollution and outcome as a function of distance. 
To estimate causal effects, it uses a mixed two-stage least squares method that combines high-
frequency (daily) pollution with low-frequency (annual) outcome data. This avoids using annual 
pollution data which is vulnerable to inter-regional common shocks and insufficient variation. We 
apply the approach to spillovers of particulate matter smaller than 10 micrograms (PM10) on 
manufacturing labor productivity in China. A one 𝜇𝜇g/m3 annual increase in PM10 locally reduces 
output by CNY 4,613 and an increase at 50 kilometers by CNY 535. The spillovers decline quickly to 
CNY 83 at 600 kilometers and then slowly to zero at about 1,000 kilometers. Our approach is easily 
adapted to compare spillover and local effects for other outcomes. 
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1. Introduction 

Since the seminal work of Oates (1972) on fiscal federalism, there has been a debate 
on whether centralized or decentralized policies can achieve the most efficient 
outcome (Oates and Schwab, 1988; Ogawa and Wildasin, 2009; Banzhaf and Chupp, 
2012; Eichner and Runkel, 2012; Fell and Kaffine, 2014). Local authorities have better 
information about costs and benefits and can better tailor local policies than central 
authorities whose policies tend to be overly uniform. However, local jurisdictions 
generally ignore the effects of their policies on other jurisdictions unless these are 
internalized administratively. Clear and enforceable assignment of property rights 
followed by Coasian bargaining can solve these externalities even under 
decentralized control (Coase, 1960) but require knowledge and quantification of the 
extra-territorial damages incurred. 

Air pollution is a prototypical example of these issues with serious welfare 
implications. High levels of air pollution in developing countries have led to adverse 
effects on health, economic output, and physical and mental comfort. Ninety-two 
percent of all air pollution-related deaths are estimated to occur in low- and middle-
income countries and ambient air pollution is estimated to have cost 4.4% of global 
GDP in 2016 (Ostro, et al., 2018). Air pollution levels far exceed the social optimum 
because spillovers, including trans-boundary, are not internalized. Regardless of the 
method used to correct this, a necessary input is the magnitude and geographic 
extent of the spillovers involved. Centralized decision-making to internalize 
spillovers requires knowledge of how far spillovers extend at significant levels. 
Alternatively, assigning property rights and allowing for decentralized Coasian 
bargaining requires a method for the parties to estimate the origin of spillovers and 
their damage. And estimating air pollution spillovers requires estimating not just the 
quantity of pollution that drifts as a function of distance but also the harm that it 
causes upon arrival. 

Despite this, we are not aware of any studies that quantify trans-boundary spillovers 
relative to local effects for any kind of pollution. Previous papers show that trans-
boundary pollution spillovers exist and that they affect extra-territorial economic 
well-being1 but they do not quantify how spillovers compare to local effects as a 
function of distance. Our paper begins to fill this gap by estimating an air pollution 
spillover gradient for labor productivity. While we demonstrate our estimation 
approach with productivity, it can be easily tailored to estimate the spillovers for 
other outcomes. We estimate the effect of trans-boundary drifts of particulate matter 
less than 10 micrograms in diameter (PM10) on short-run manufacturing labor 
                                                           
1 These include Sigman (2002), Sigman (2005), Zheng et al. (2014), Bošković (2015), Chen and Ye (2015), 
Kahn et al. (2015), Cai et al. (2016), Altindag et al. (2017), Jia and Ku (2017) , Lipscomb and Mobarak 
(2017), Sheldon and Sankaran (2017) and Goodkind et al. (2019). We comment more on these below. 
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productivity in China using a large firm-level data set from 2001 to 2007. A one 
μg/m3 annual increase in PM10 in a city within 50 kilometers decreases the average 
firm’s annual labor productivity by CNY 535 (0.035%).2 This effect declines quickly 
to CNY 83 (0.005%) for nearby cities at 550-600 kilometers after which it declines 
slowly to zero at about 1,000 kilometers. This compares to a local effect of CNY 4,613 
(0.302%). That is, the spillover is roughly 11.6% of the local effect at 50 kilometers, 
falling to 1.8% at 600 kilometers, and zero at 1,000 kilometers and beyond. 

We focus on PM10 because it is the most prevalent air pollutant consistently 
monitored during the time period. We measure labor productivity as value-added 
per employee among manufacturing firms. There are two main determinants of the 
trans-boundary effect of pollution on productivity: how much air pollution is 
physically transported across cities (the pollution spillover) and the causal effect of 
this pollution on productivity upon its arrival in the destination city. Ideally, the 
pollution spillover can be estimated flexibly to allow for a highly nonlinear gradient. 
However, the causal effect requires instruments for pollution and is therefore 
constrained to linear estimating equations. 

To accomplish this, we proceed in two steps. In the first step, we estimate the 
pollution spillover (which we call the spillover decay function) of nearby- on focal-
city pollution flexibly as a function of distance using daily data conditional on wind 
blowing toward the focal city. In the second step, we estimate the causal effect of 
focal-city air pollution on labor productivity of the focal-city’s firms. Multiplying the 
spillover decay effects from the first step by the causal effect from the second step is 
equivalent to a reduced-form approach3 and allows us to estimate air pollution 
spillovers on labor productivity flexibly over a range of distances and compare it to 
the local effect. 

When we estimate the causal effect of pollution on productivity in the second step, 
we instrument for the endogeneity of focal-city air pollution using the air quality of 
the nearest nearby city conditional on wind blowing toward the focal city. When 
wind blows toward the focal city, imported pollution from the nearby city degrades 
focal-city air quality. Although other instruments could be used in this step, using 
nearby-city pollution is convenient because the required data (daily pollution and 
wind measures) are commonly available and are already used to estimate the 
pollution decay function in the first step. The exogeneity of this instrument requires 

                                                           
2 This estimate is for the average city given average weather. 
3 Although the spillover decay function is estimated at the daily level, the effects can be interpreted as 
the annual effects of a sustained and uniform increase in nearby-city pollution on all days of the year 
if wind blew toward focal cities on all days. Since the wind blows toward focal cities roughly half the 
time on average, annual spillovers are roughly half the daily effect as we describe when we present 
our results. 
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high-frequency data for two reasons. First, to capture wind direction shifts precisely 
enough and, second, to preclude confounding factors affecting both nearby-city 
pollution and focal-city productivity that might occur over longer time periods (in 
particular inter-regional productivity shocks).4 We provide evidence that daily data 
are frequent enough but annual data are not. To combine the daily instrumenting 
data with the annual productivity data, we employ mixed two-stage least squares 
(M2SLS) (Lleras-Muney, 2005; Dhrymes and Lleras-Muney, 2006), a methodology for 
implementing 2SLS with different levels of aggregation in the two stages. This 
approach can be applied to other outcome variables such as GDP, morbidity, and 
mortality that are measured annually. 

This paper contributes to three strands of literature. First, we quantify the magnitude 
of spillovers relative to local effects, a key input in choosing centralized versus 
decentralized environmental policies (Ogawa and Wildasin, 2009; Banzhaf and 
Chupp, 2012; Eichner and Runkel, 2012; Williams, 2012; Fell and Kaffine, 2014). 
Extant work on trans-boundary spillovers either shows that trans-boundary 
pollution spillovers exist (Sigman, 2002; Sigman, 2005; Chen and Ye, 2015; Kahn et al., 
2015; Cai et al., 2016; Lipscomb and Mobarak, 2017) or that they affect extra-
territorial economic well-being (Zheng et al., 2014; Bošković, 2015; Altindag et al., 
2017; Jia and Ku 2017; Sheldon and Sankaran, 2017) but do not quantify their 
extensiveness or size relative to local effects.5 Goodkind et al. (2019) estimate the 
pollution decay function for a different pollutant by a different method but use the 
exposure-response method to estimate health costs. 

Second, we develop an approach based on M2SLS that allows high-frequency 
variation in wind direction to be used as an instrument for high-frequency air 
pollution in estimating its causal effect on low-frequency outcomes. There are a 
number of papers that use wind direction as the main source of exogenous variation 
in air pollution. These studies either use high-frequency wind direction to 
instrument for short-run air pollution (e.g., Rangel and Vogl, 2016; Schlenker and 
Walker, 2016; Deryugina et al., 2016), or use low-frequency prevailing wind direction 
as the exogenous variation for long-run air pollution (Anderson, 2015; Freeman et al., 
2017). Although previous applications of M2SLS use it to increase efficiency of the 
estimates, we employ it because endogeneity is a concern with low- but not high-
frequency data. The approach can be easily adapted to estimate the effect of air 
pollution on other economic outcomes measured at the quarterly or annual level. It 

                                                           
4 Exogeneity also requires that wind direction is random with respect to nearby-city pollution 
conditional on control variables. We provide evidence that this is the case. 
5 The science literature has documented the long-range transport of pollutants across countries (e.g., 
Wilkening et al., 2000) but these do not estimate pollution decay as a function of distance. 
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also offers the possibility of applying it to outcomes besides productivity that are 
longer than one year. 

Third, our paper adds to the growing literature on estimating air pollution’s effect 
on labor productivity (Graff Zivin and Neidell, 2012; Chang et al., 2016; Fu et al., 2018; 
Chang et al., forthcoming; He et al., forthcoming). These papers estimate the effect of 
an increase in local air pollution on local firms’ productivity. In contrast to previous 
papers, we distinguish the effect of local and imported pollution sources on 
productivity and show that spillovers contribute significantly to productivity losses. 
There are multiple channels by which pollution can affect labor productivity. In the 
short run, pollution can decrease physical stamina and lead to lower output. In 
addition, employees may miss work days due to their own sickness or that of family 
members. Long-term exposure may lead to premature death with inexperienced 
workers replacing experienced. Pollution may also impair cognitive ability and 
cause psychological changes. While we cannot distinguish these channels we capture 
the aggregate effect of all of them. 

We find that pollution exerts a substantial negative effect on productivity even at 
relatively far distances. Thirteen percent of PM10 produced from a city within 300 
kilometers is imported into a focal city when the wind blows directly toward it. 
From a policy perspective, to internalize this would require centralized control of 
administrative areas that are 300 kilometers in radius or 283-thousand square 
kilometers of area. This is greater in size than many medium-sized provinces in 
China such as Hunan, Shaanxi, Hebei, Jilin, Hubei, and Guangdong (Ministry of 
Civil Affairs, 2017). Thus, our results indicate that environmental policies need to be 
coordinated at the supra-provincial level to internalize spillovers. 

Our results have specific implications for the role of China’s governance system in 
air pollution spillovers. China’s reforms have succeeded in part because of its 
regionally decentralized system in which the central government provides incentives 
to local governments based primarily on local GDP to the exclusion of other criteria 
(Jin et al., 2005; Li and Zhou, 2005; Xu, 2011) such as environmental quality. Our 
results indicate that these incentives exacerbate the negative implications of air 
pollution spillovers on manufacturing productivity. This complements Jia (2017) 
which provides empirical evidence that these incentives result in more pollution. 

The remainder of the paper proceeds as follows. The next section describes our 
estimation approach and Section 3 our data. Section 4 provides the results, and 
Section 5 concludes. 
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2. Estimation 

2.1 Overview of estimation approach 

To allow for a comparison of local and spillover effects on productivity, we rely on 
the fact that the reduced-form effect equals the intensity of treatment (how nearby-
city pollution affects focal-city pollution) multiplied by the causal effect of focal-city 
pollution on focal-city productivity. Letting 𝑃𝑃𝑛𝑛 represent nearby-city pollution, 𝑃𝑃𝑓𝑓 
focal-city pollution, and 𝑌𝑌𝑓𝑓 focal-city productivity: 

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑠𝑠𝑜𝑜 𝑃𝑃𝑛𝑛𝑠𝑠𝑜𝑜 𝑌𝑌𝑓𝑓 = (𝑠𝑠𝑜𝑜𝑜𝑜𝑠𝑠𝑒𝑒𝑒𝑒 𝑠𝑠𝑜𝑜 𝑃𝑃𝑛𝑛 𝑠𝑠𝑜𝑜 𝑃𝑃𝑓𝑓)  ×  (𝑒𝑒𝑐𝑐𝑐𝑐𝑠𝑠𝑐𝑐𝑠𝑠 𝑠𝑠𝑜𝑜𝑜𝑜𝑠𝑠𝑒𝑒𝑒𝑒 𝑠𝑠𝑜𝑜 𝑃𝑃𝑓𝑓  𝑠𝑠𝑜𝑜 𝑌𝑌𝑓𝑓).     (1) 

This follows because the causal effect estimated via 2SLS using nearby-city pollution 
as an instrument is (Angrist and Pischke, 2015: 107): 

𝑒𝑒𝑐𝑐𝑐𝑐𝑠𝑠𝑐𝑐𝑠𝑠 𝑠𝑠𝑜𝑜𝑜𝑜𝑠𝑠𝑒𝑒𝑒𝑒 𝑠𝑠𝑜𝑜 𝑃𝑃𝑓𝑓  𝑠𝑠𝑜𝑜 𝑌𝑌𝑓𝑓 = �𝑒𝑒𝑓𝑓𝑓𝑓𝑒𝑒𝑒𝑒𝑒𝑒 𝑜𝑜𝑓𝑓 𝑃𝑃𝑛𝑛 𝑜𝑜𝑛𝑛 𝑌𝑌𝑓𝑓�
�𝑒𝑒𝑓𝑓𝑓𝑓𝑒𝑒𝑒𝑒𝑒𝑒 𝑜𝑜𝑓𝑓 𝑃𝑃𝑛𝑛 𝑜𝑜𝑛𝑛 𝑃𝑃𝑓𝑓�

.     (2) 

We therefore proceed in two steps. In the first step we estimate the effect of nearby- 
on focal-city pollution using daily data. We allow the effect to vary at different 
distances with controls for weather and seasonality. We call this the pollution decay 
function. In the second step we employ the M2SLS method to estimate the causal 
effect of focal-city pollution on focal-city productivity using annual data, 
instrumenting daily focal-city pollution with daily nearby-city pollution conditional 
on wind direction. This step estimates the local average treatment effect of pollution 
on productivity. We then multiply the estimates for the spillover decay function 
obtained in the first step by the instrumental variable coefficient from the second 
step to yield the spillover effect of nearby-city pollution on focal-city productivity 
according to Equation (1). We bootstrap to compute standard errors that account for 
estimation error across both steps. The spillover decay function is estimated at the 
city level because pollution is measured at that level while the causal effects of 
pollution on productivity are estimated at the firm level because productivity occurs 
and is measured at the firm level. 

The next subsection describes the first step of our approach (estimating the pollution 
decay function) and the following subsection the second step (estimating the causal 
effect). 

2.2 Step one: estimating the pollution decay function 

The pollution decay function isolates the physical transport of PM10 between nearby 
and focal cities. If wind direction is orthogonal to omitted factors that jointly affect 
both nearby- and focal-city pollution, relating the two during periods when wind 
blows toward the focal city isolates these spillovers. We offer evidence that wind 
direction is orthogonal to these omitted factors when we present our results. In our 
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sample, wind direction changes by more than 90 degrees (and therefore blows in the 
opposite direction) from day-to-day on more than 25% of days (Appendix A shows 
the full distribution of the change in wind direction across days). Thus, it is 
imperative to use daily data to isolate imported from local pollution for a focal city. 
Averaging over a long time period risks mingling periods in which the wind blows 
toward and away from the focal city. 

We follow the concentric rings approach from the urban economics literature to 
estimate the pollution decay function.6 This approach estimates the spillover 
between a location and each of several concentric rings radiating outward from that 
location. We use a piecewise linear regression to implement this, allowing the slope 
and intercept to differ for each of the concentric rings. We define rings at every 50 
kilometers indexed by 𝑏𝑏 = 1,2,3, … ,𝐵𝐵 and identify all the nearby cities within each 
ring (if at least one exists) for each focal city. That is, all nearby cities within 0 to 50, 
50 to 100, . . . , (𝐵𝐵 − 1)*50 to 𝐵𝐵*50 kilometers. We expand 𝐵𝐵 far enough to ensure the 
decay function has plateaued or hit zero (𝐵𝐵 = 36 or 1,800 kilometers). 

Having identified these focal-nearby city pairs, we then estimate the impact of 
nearby city 𝑜𝑜’s PM10 on focal city 𝑜𝑜’s PM10 level on day 𝑑𝑑 of month 𝑚𝑚 in year 𝑒𝑒 by 
estimating the following equation conditional on the wind blowing from the nearby 
to the focal city: 

𝑃𝑃𝑒𝑒𝑡𝑡
𝑓𝑓 = Ι𝑏𝑏�𝜆𝜆1𝑏𝑏 + 𝜆𝜆2𝑏𝑏𝑐𝑐𝑏𝑏𝑠𝑠�𝑒𝑒𝑠𝑠𝑠𝑠�𝜃𝜃𝑒𝑒𝑑𝑑

𝑜𝑜𝑜𝑜��𝑃𝑃𝑒𝑒𝑡𝑡𝑛𝑛 � + 𝜆𝜆3𝑊𝑊𝑒𝑒𝑡𝑡
𝑓𝑓 + 𝜔𝜔𝑓𝑓 + 𝜅𝜅𝑟𝑟𝑒𝑒𝑟𝑟 + 𝜀𝜀𝑒𝑒𝑡𝑡

𝑓𝑓𝑛𝑛,  

∀𝑜𝑜,𝑜𝑜 ∈ ℱ,𝑜𝑜 ≠ 𝑜𝑜,∀𝑏𝑏 = 1,⋯𝐵𝐵, (3) 

where ℱ is the set of all cities in the data, 𝑃𝑃𝑒𝑒𝑡𝑡
𝑓𝑓  and 𝑃𝑃𝑒𝑒𝑡𝑡𝑛𝑛  are the pollution levels of focal 

city 𝑜𝑜 and nearby city 𝑜𝑜 on day 𝑑𝑑 of year 𝑒𝑒, and 𝑊𝑊𝑒𝑒𝑡𝑡
𝑓𝑓  are daily weather controls that 

affect pollution in the focal city. The indictor variable Ι𝑏𝑏 is set to one for distance 
band 𝑏𝑏 if nearby city 𝑜𝑜 is within distance band 𝑏𝑏. 𝜆𝜆1𝑏𝑏 allows the intercept to vary for 
each distance band. 𝜆𝜆2𝑏𝑏 are the coefficients of interest and capture the average 
physical transport of nearby-city pollution to the focal city within each band. An 
observation in this regression is a focal-nearby city pair on a particular day. We form 
all possible combinations of focal and nearby cities within 1,800 kilometers. Since 
each focal city may have more than one nearby city across or even within bands this 
is a stacked regression with potentially multiple observations per focal city. 

                                                           
6 The urban economics literature documents the spatial decay effects of agglomeration economies and 
knowledge spillovers (Rosenthal and Strange, 2003; Fu, 2007; Henderson, 2007; Arzhagi and 
Henderson, 2008; Rosenthal and Strange, 2008). Kernel-density smoothing across distances is another 
approach to estimate spillovers (Duranton and Overman, 2005) but requires more data than we have 
available. 
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We follow Schlenker and Walker (2016) in weighting nearby-city pollution by the 
absolute value of the cosine of the angle.7 This angle �𝜃𝜃𝑒𝑒𝑡𝑡

𝑓𝑓𝑛𝑛� is the difference between 
the wind direction and the direction of the ray from the nearby to the focal city on 
day 𝑑𝑑 of year 𝑒𝑒. For example, in Figure 1 where the focal city lies at an angle of 21° 
from the nearby city, if the wind is blowing at −19° then 𝜃𝜃𝑒𝑒𝑡𝑡

𝑓𝑓𝑛𝑛 = −40° or if the wind is 
blowing at 43° then 𝜃𝜃𝑒𝑒𝑡𝑡

𝑓𝑓𝑛𝑛 = 22°. We include a day in estimation as long as the wind 
blows within a 90° arc on either side of the ray connecting the nearby to the focal city. 
This is illustrated in the shaded area of Figure 1 for the example in which the focal 
city lies at an angle of 21° from the nearby city. In this example a day is included as 
long as −69° < 𝜃𝜃𝑒𝑒𝑡𝑡

𝑓𝑓𝑛𝑛 < 111°. The pollution decay function is therefore identified from 
variation along two dimensions: distance between focal and nearby city and wind 
direction angle . 

[Insert Figure 1] 

𝑊𝑊𝑒𝑒𝑡𝑡
𝑓𝑓  includes daily averages of relative humidity and wind speed, daily total 

precipitation, and temperature bins as described below. We include focal-city fixed 
effects (𝜔𝜔𝑓𝑓) to control for any time-persistent unobserved factors affecting the 
pollution drift to a focal city. Region-by-year-by-month fixed effects (𝜅𝜅𝑟𝑟𝑒𝑒𝑟𝑟) control 
for seasonal factors that affect pollution drift in a region such as wind patterns. We 
follow Zhang et al. (2018) in grouping the provinces into each of seven regions as 
described in Appendix B. The error term (𝜀𝜀𝑒𝑒𝑡𝑡

𝑓𝑓𝑛𝑛) captures any unobserved factors 
affecting drift between the focal-nearby city pair on day 𝑑𝑑 of year 𝑒𝑒. We cluster 
standard errors at the focal-city level to allow for serial correlation across time 
within a focal city. This also allows for heteroscedasticity introduced by focal cities 
having different numbers of nearby cities. 

2.3 Step two: estimating causal effect of pollution on productivity 

In the second step we estimate the causal effect of focal-city pollution on focal-city 
productivity. Our productivity estimates capture all possible channels that affect 
per-hour productivity (intensive margin) and hours worked (one type of extensive 
margin). In the short run, high air pollution concentrations can lead to decreased 
lung function, irregular heartbeat, increased respiratory problems, nonfatal heart 
attacks, and angina.8 Long-run cumulative exposure may lead to cardiopulmonary 
                                                           
7 We weight by the angle because more nearby-city pollution is imported the more directly wind 
blows toward the focal city. Using data for −90° ≤ 𝜃𝜃 ≤ 90° for the nearest nearby-city within 300 
kilometers, the correlation between 𝑒𝑒𝑠𝑠𝑠𝑠(𝜃𝜃) and residuals from regressing focal-city pollution on 
nearby-city pollution and focal-city weather is 0.046 significant at better than the 0.01% level. This 
means that if nearby-city pollution is increased by one 𝜇𝜇g/m3 while 𝜃𝜃 is moved from 90° 
(perpendicular to the focal city) to 0° (directly toward the focal city), imported pollution increases by 
0.046 𝜇𝜇g/m3 (36% of the total 0.129 𝜇𝜇g/m3 spillover at 300 kilometers shown in Appendix E). 
8 See the EPA website: https://www.epa.gov/pm-pollution. 

https://www.epa.gov/pm-pollution
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diseases, respiratory infections, lung cancer (EPA, 2004), and asthma (Neidell, 2004) 
that can surface in the short run. All of these health conditions may decrease 
physical stamina and lead to missed work days. Workers may also be absent from 
work to care for the young and elderly affected by pollution (Chay and Greenstone, 
2003; Hanna and Oliva, 2015; Deryugina et al., 2016; Aragόn et al., 2017). Increased 
mortality (Chen et al., 2013; Ebenstein et al., 2017) can lead to experienced workers 
being replaced by less experienced ones. Air pollution can also have psychological 
effects including lowering cognitive ability, altering emotions, and increasing 
anxiety (Levinson, 2012; Lavy et al., 2014; Pun et al., 2016; Chen et al., 2018) which 
would affect both physical and mental performance. While our estimates are unable 
to distinguish between these various channels they capture the effect of all of them. 

2.3.1 Step two: identification 

OLS estimates of pollution’s effect on labor productivity are subject to simultaneity 
and omitted variable biases. Even without any effect of pollution on productivity, 
cities with more output will produce more pollution, leading OLS estimates to be 
biased upward toward or above zero. If pollution lowers labor productivity, the 
lower productivity will result in less pollution biasing OLS estimates downward. 
Firms may also respond to the lowered labor productivity by substituting from labor 
to alternative inputs biasing OLS estimates upward if cleaner inputs are used or 
downward if dirtier ones are used. 

Omitted-variable biases due to local, time-varying conditions are also possible (firm 
fixed effects absorb any time-invariant effects). For example, high-productivity firms 
may implement advanced, lower-polluting technologies over time while low-
productivity firms do not. Spatial sorting could also introduce spurious correlations. 
Firms may choose to locate in cities with less severe pollution because it will raise 
their productivity, biasing OLS estimates upward, or choose to locate in cities with 
more severe pollution because they have lax environmental regulations and impose 
fewer costs (Becker and Henderson, 2000; Greenstone, 2002; Brunnermeier and 
Levinson, 2004), biasing OLS estimates downward. Workers may also systematically 
sort across cities. In particular, high-skilled workers generally have a higher 
willingness-to-pay for clean air which would lead to low-skilled workers being 
located disproportionately in dirtier cities (Chen et al., 2017; Lin, 2017) and biasing 
OLS estimates downward. The inclusion of firm fixed effects means that only 
migrations of firms or workers during the sample period will bias the results. 

We address these issues using nearby-city pollution that drifts to the focal city as an 
instrumental variable. A firm’s productivity is affected by both locally-produced 
pollution and nearby cities’ pollution that is transported in by wind. To ensure 
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exogeneity, we condition on the wind blowing from the nearby to the focal city.9 
Exogeneity also requires that wind direction timing is random with respect to air 
pollution, conditional on controls, which we confirm below. Identification requires 
that the instrument be sufficiently correlated with the endogenous regressor 
(inclusion restriction) and uncorrelated with any unobserved determinant of the 
dependent variable (exogeneity condition). 

The inclusion restriction requires that the nearby city is close enough that significant 
amounts of pollution can drift from it to the focal city. To ensure this, we include 
only focal cities that have a nearby city sufficiently close. Fine particulates such as 
PM10 can travel hundreds of kilometers (according to EPA, 1996, page IV-7 and 
confirmed by our pollution decay function estimates below). We consider maximum 
distance cutoffs ranging from 150 to 300 kilometers and find robust results. There is 
a tradeoff in increasing the distance: it increases the available data but weakens the 
instrument’s power. To also increase the instrument’s power we include only the 
nearest nearby city for each focal city. As a result, even with a maximum distance of 
300 kilometers the average distance between focal and nearby cities is only 106.6 
kilometers. 

The exogeneity condition requires that unobserved determinants of focal-city 
productivity are uncorrelated with the nearby city’s pollution. This requires high-
frequency data for two reasons. First, periods in which the wind imports pollution 
from outside must be isolated from those when it does not. To ensure this, in the 
instrumenting equation we condition on the wind blowing from the nearby to the 
focal city on a particular day. We offer evidence when we present our results that 
daily data succeeds in isolating periods when wind blows toward the focal city. 

Second, high-frequency data is required to ensure common shocks do not affect both 
focal- and nearby-city output. For example, regional shocks to productivity could 
raise both cities’ output thereby increasing nearby-city pollution as well. 
Alternatively, if focal- and nearby-city production are substitutes in output markets 
then output growth in a focal city will reduce output and pollution in the nearby city. 
While common regional shocks are likely to induce correlated actions across cities 
over a long time period, they are unlikely to do so over a short time frame due to 
lags in shock propagation and delays in responses to those shocks. With the use of 
daily data, violating the exogeneity condition would require that shocks affect focal- 
and nearby-city productivity on a daily basis. Conveniently, this high-frequency 
instrument is already available as it is required to estimate the pollution decay 
function. We show that aggregating the data to lower and lower frequencies leads to 

                                                           
9 When the wind blows toward the nearby city its pollution is not exogenous because greater focal-
city output increases the nearby city’s air pollution. 
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increasingly unintuitive results in the first stage and insignificant results in the 
second stage. This is consistent with bias introduced by regional correlations over 
longer periods. 

Our instrument addresses each of the potential endogeneity biases. Nearby-city 
pollution is uncorrelated with focal-city output in the absence of common regional 
shocks that are propagated and responded to on a daily basis. Any time-varying 
local trends in pollution and productivity would need to be correlated across the 
focal and nearby city on a daily basis to bias the estimates. Substitution away from 
labor and toward other inputs by focal-city firms would also need to be reflected in 
nearby-city pollution on a daily basis. Entry and exit may be correlated with 
pollution levels over long periods such as a year. However, such correlations are 
unlikely to manifest themselves on a daily basis. Similarly, worker migration would 
need to be correlated across the focal and nearby cities on a daily basis to induce bias. 

2.3.2 Step two: procedure 

The remaining problem is that the outcome that we wish to estimate (productivity) is 
measured annually. To accommodate daily data for the pollution instrument, we 
employ M2SLS to estimate the causal effect of local pollution on local productivity. 
M2SLS estimates are consistent and asymptotically normal (Lleras-Muney, 2005; 
Dhrymes and Lleras-Muney, 2006) provided that the groupings are independent of 
the structural error as they are when the grouping is a primitive (in our case 
grouping daily observations into years).10 

The first-stage equation predicts air pollution for firm 𝑠𝑠 located in focal city 𝑜𝑜 of 
region 𝑠𝑠 on day 𝑑𝑑 in month 𝑚𝑚 of year 𝑒𝑒 conditional on the wind blowing from the 
nearby to the focal city. While the spillover equation in step one uses city data, this 
equation uses firm data to be consistent with the firm data used in the second stage: 

𝑃𝑃𝑖𝑖𝑒𝑒𝑡𝑡
𝑓𝑓 = 𝛾𝛾1𝑐𝑐𝑏𝑏𝑠𝑠 �𝑒𝑒𝑠𝑠𝑠𝑠 �𝜃𝜃𝑠𝑠𝑒𝑒𝑑𝑑

𝑜𝑜𝑁𝑁∗�� 𝑃𝑃𝑖𝑖𝑒𝑒𝑡𝑡𝑁𝑁
∗ + 𝛾𝛾2𝑊𝑊𝑖𝑖𝑒𝑒𝑡𝑡

𝑓𝑓 + 𝛼𝛼𝑖𝑖 + 𝜅𝜅𝑟𝑟𝑒𝑒𝑟𝑟 + 𝜖𝜖𝑖𝑖𝑒𝑒𝑡𝑡
𝑓𝑓 , (4) 

where 𝑃𝑃𝑖𝑖𝑒𝑒𝑡𝑡
𝑓𝑓  is the pollution in firm 𝑠𝑠’s focal city 𝑜𝑜 on day 𝑑𝑑 of year 𝑒𝑒, 𝜃𝜃𝑖𝑖𝑒𝑒𝑡𝑡

𝑓𝑓𝑁𝑁∗
 is the wind 

direction relative to the ray from the nearest nearby city to firm 𝑠𝑠’s focal city on day 
𝑑𝑑 of year 𝑒𝑒, and 𝑃𝑃𝑖𝑖𝑒𝑒𝑡𝑡𝑁𝑁

∗  is the pollution level on that same day in focal city 𝑜𝑜’s nearest 
nearby city 𝑁𝑁∗ ∈ ℱ within a maximum radius distance. If no nearby city is available 
for a focal city it is dropped from the estimation. Every nearby city is also a focal city 
although it might be paired with a different nearby city that is closer to it. We test 
the sensitivity of our results to maximum distance cutoffs ranging from 150 to 300 

                                                           
10 Lleras-Muney (2005) applies M2SLS to estimate the causal impact of education on health, Massa 
and Žaldokas (2014) to estimate international demand for US bonds, and Jordan (2016) to estimate 
local environmental preferences on mine closures. 
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kilometers.11 𝑊𝑊𝑖𝑖𝑒𝑒𝑡𝑡 is a vector of daily weather variables faced by firm 𝑠𝑠 on day 𝑑𝑑 of 
year 𝑒𝑒. We include linear and quadratic functions of daily relative humidity, wind 
speed, and cumulative precipitation. We allow for a flexible, nonlinear function of 
temperature following Deschênes and Greenstone (2011) and Zhang et al. (2018) 
since it has been found to affect productivity (Zhang et al., 2018). We construct 
indicator variables for the daily average temperature below 0°, 5° intervals from 0 to 
30°, and above 30° Celsius. 

In defining whether the wind blows toward the focal city, we impose more stringent 
criteria than in the pollution decay function estimation to ensure a sufficient quantity 
of pollution is imported from the nearby city. This is necessary for the instrument to 
be powerful.12 For our baseline estimates, we include a day if the wind passes within 
a 45° arc on either side of the ray connecting the two cities. We refer to this as the 
“middle” funnel. Figure 2 illustrates this for the example in which the focal city lies 
at an angle of 21° from the nearby city. In this case a day is included as long as 
−24° < 𝜃𝜃𝑒𝑒𝑡𝑡

𝑓𝑓𝑛𝑛 < 66° (the shaded region of the figure). We check the robustness of our 
results to arcs of ±40° (“narrow” funnel) and ±50° (“broad” funnel). As in the 
pollution decay estimation, the nearby-city’s pollution is weighted by the absolute 
value of the cosine of the angle. 

[Insert Figure 2 here] 

Firm fixed effects (𝛼𝛼𝑖𝑖) capture time-persistent unobservables that affect firm 𝑠𝑠’s 
pollution exposure. Since no firms switch focal cities or industries over the sample 
period, these also absorb city-specific and industry-specific time-invariant factors 
that affect local pollution. Region-by-year-by-month fixed effects (𝜅𝜅𝑟𝑟𝑒𝑒𝑟𝑟) control for 
any year-month specific unobservables affecting the pollution in a region. We cluster 
standard errors at the focal-city level to allow for spatial correlation for all firms 
within each focal city and serial correlation across days within a focal city over time. 

This equation differs from the pollution decay function (Equation (3)) in two ways. 
First, in order to ensure the power of the instrument, Equation (4) restricts estimation 
to shorter distances (a maximum of 300 kilometers), it utilizes only the nearest 
nearby city, and includes only days when the wind direction is within a funnel 
rather than within a half-circle. This maximizes the potential for the nearby city’s 
pollution to drift to and affect the focal city. The objective of Equation (3) is to 
estimate spatial decay and it therefore utilizes all of the nearby cities to a focal city, 

                                                           
11 Distances below 150 kilometers yielded insufficient data and distances above 300 kilometers 
yielded a weak instrument as we demonstrate below. 
12 Footnote 7 provides evidence that nearby-city pollution is a stronger instrument when the wind 
blows more directly in the direction of the focal city. Broader funnels (up to ±90°) yield similar but 
less precisely estimated results. 
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utilizes all days with wind direction within a half-circle, and extends the 
measurement of these spillovers to a much greater distance. Second, Equation (3) 
also allows for a much more flexible functional form for estimating the spillover 
decay function than the linear restriction that 2SLS imposes on Equation (4). 

Using the results from estimating Equation (4), we compute predicted values 𝑃𝑃�𝑖𝑖𝑒𝑒𝑡𝑡
𝑓𝑓  for 

each day included in the estimation (wind blowing toward the focal city) and 
average them over days within each firm-year to obtain instrumented pollution for 
the second-stage: 𝑃𝑃��𝑖𝑖𝑒𝑒

𝑓𝑓. The second-stage equation is: 

ln�𝑌𝑌𝑖𝑖𝑒𝑒
𝑓𝑓 𝐿𝐿𝑖𝑖𝑒𝑒

𝑓𝑓� � = 𝛽𝛽1𝑃𝑃��𝑖𝑖𝑒𝑒
𝑓𝑓 + 𝛾𝛾2𝑊𝑊�𝑖𝑖𝑒𝑒

𝑓𝑓 + 𝛼𝛼𝑖𝑖 + 𝛿𝛿𝑟𝑟𝑒𝑒 + 𝜂𝜂𝑖𝑖𝑒𝑒
𝑓𝑓 , (5) 

where 𝑌𝑌𝑖𝑖𝑒𝑒
𝑓𝑓 𝐿𝐿𝑖𝑖𝑒𝑒

𝑓𝑓�  is value added per employee for firm 𝑠𝑠 in the focal city 𝑜𝑜 in year 𝑒𝑒 and 
𝑊𝑊�𝑖𝑖𝑒𝑒

𝑓𝑓 contains the weather controls from the first stage averaged over all days within 
each firm-year (i.e., averages of the linear and quadratic functions of non-
temperature variables and temperature bins containing the fraction of days in which 
the average temperature is below 0°, in 5° intervals from 0 to 30°, and above 30° 
Celsius).13 

Firm fixed effects 𝛼𝛼𝑖𝑖 capture time-persistent firm attributes that affect labor 
productivity. Region-by-year fixed effects (𝛿𝛿𝑟𝑟𝑒𝑒) capture time-varying, regional shocks 
to firm output. The error term (𝜂𝜂𝑖𝑖𝑒𝑒) includes time-varying, firm-level shocks to 
productivity. We cluster standard errors at the focal-city level to allow for serial 
correlation within each firm over time and spatial correlation within each city. We 
adjust for the error introduced in the first-stage estimation using a block bootstrap as 
in Schlenker and Walker (2016) with 100 iterations. 

 

3. Data 

We estimate pollution spillovers on labor productivity for manufacturing firms in 
China from 2001 to 2007 in two steps. The first step (estimating the pollution decay 
function) requires daily pollution and weather data. The second step of our 
procedure (estimating the causal effect of air pollution on productivity) requires 
daily data for the instrument to address the endogeneity of pollution and 
accommodates annual data on productivity. 
                                                           
13 To ensure the exclusion restriction is met, the first-stage equation must include the non-averaged 
values of all the exogenous variables from the second stage. The weather controls in the second stage 
(𝑊𝑊�𝑖𝑖𝑒𝑒

𝑓𝑓) are yearly averages of the linear and quadratic terms of all non-temperature variables in the first 
stage. For the temperature variable, the bins in the second stage are annual averages of the daily 
indicator variables included in the first stage. The firm fixed effects remain the same as in the first 
stage. Finally, the region-by-year fixed effects included in the second stage are averages of the region-
by-year-by-month fixed effects in the first stage. 
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3.1 Pollution data 

The highest-frequency pollution data available with significant geographic coverage 
during our time period is the daily Air Pollution Index (API) published by the 
Ministry of Ecology and Environment and Beijing Environmental Protection 
Bureau.14 This is available at the city level and only for larger cities. The number of 
cities reporting API data increases over time in the sample. Our sample includes 60 
unique cities (Appendix C shows the location of the cities). 

The API ranges from 0 to 500 with higher values indicating higher pollution 
concentrations and more harmful health effects (Andrews, 2008). During our sample 
period, a city’s daily API reports the worst of three pollutants: particulate matter 
(PM10), nitrogen dioxide (NO2), and sulfur dioxide (SO2) whose concentrations are 
measured at multiple monitoring stations within the city. Each is rescaled as an API 
measure to make them comparable and the pollutant with the maximum API is 
reported.15 The identity of the maximal pollutant is reported if the API exceeds 50. 

The API is potentially subject to manipulation by those who collect and report the 
data. Using 2001 to 2010 data, Ghanem and Zhang (2014) find a discontinuity in the 
API distribution around 100 which suggests that self-reported data is manipulated 
by local officials who are evaluated on the annual number of “Blue Sky” days (those 
below 100). Also consistent with this, Andrews (2008) finds that a significant number 
of days in 2006 and 2007 with reported API values between 96 and 100 would fall in 
the range 101 to 105 if calculated using the underlying monitoring station data. To 
avoid any possible bias in our estimates we exclude days when the API is between 
95 and 105 in either the focal or nearby city. 

We use PM10, the density of particulates ten micrometers or smaller in diameter, in 
our analysis rather than the API index because we wish to use physical pollution 
levels in quantifying spillovers and PM10 is overwhelmingly the worst of the three 
pollutants (about 90% of days). We drop days in which PM10 is not the maximal 
pollutant and for the remaining days infer its value from the API based on the 
piecewise-linear relationship between PM10 and the API (Appendix D). Although we 
do not observe the worst pollutant when the API is below 50 we assume it is PM10 
because at these low levels air quality is assumed to be safe regardless of pollutant. 

                                                           
14 The satellite-based pollution data used in Fu et al. (2018) are more comprehensive and available at 
the county level; however, they are only available at the monthly level. We cannot use more recent 
API data because productivity data is not available then. 
15 Each monitoring station records the concentrations of the three pollutants multiple times a day. 
Each of these intra-day measurements is rescaled to an API index. A daily mean API for each 
pollutant across all stations in a city is then calculated and the maximum of these three means is the 
city-level API for that day. Viard and Fu (2015) provide more detail on the calculation of the API. 
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3.2 Wind and weather data 

We require daily wind data for estimating the spillover decay function and to 
instrument pollution when estimating its effect on productivity. We use station-level 
wind direction data from the World Weather Records Clearinghouse collected by the 
U.S. National Oceanic and Atmospheric Administration (NOAA).16 The data provide 
a direction from which the wind is blowing stated in degrees clockwise from true 
North in each three-hour period of each day in each city. We use a “unit-vector” 
average method defined by the NOAA to arrive at an average daily wind direction 
for each city.17 For wind direction we use data for the focal not the nearby city. 
Regardless of the wind direction in the nearby city, pollution cannot be imported if 
the wind in the focal city is not blowing from the nearby city’s direction. Differences 
in wind direction between the nearby and focal cities will not bias the estimates but 
will weaken the power of the instrument. 

To control for weather conditions that affect the transport of pollution and 
productivity we use daily weather data downloaded from the Weather 
Underground.18 

3.3 Firm productivity data 

Our firm-level output and characteristics data are from annual surveys of 
manufacturing firms conducted by China’s National Bureau of Statistics (NBS). The 
survey includes all state-owned enterprises (SOEs) regardless of size and all non-
SOEs whose annual sales exceed CNY 5 million (USD 0.8 million).19 The survey also 
contains detailed information on firm location, accounting measures, and firm 
characteristics. Before matching with the pollution data this captures 90.7% of 
China’s total manufacturing output during our sample period (Brandt et al., 2012). 
We follow Fu et al. (2018) in matching firms over time to create an unbalanced panel, 
converting nominal into real values, eliminating observations with unreliable data, 
and winsorizing the data. 

                                                           
16 Data available at: http://www.ncdc.noaa.gov/data-access. 
17 Some cities have more than one monitoring station for wind direction and the number varies 
slightly over time for some cities. In 2017, cities averaged 1.5 stations each with a maximum of four 
stations. In each three-hour period, we convert the direction for each station to a unit vector with 
coordinates 〈𝑐𝑐, 𝑠𝑠〉. The 𝑐𝑐-component is the North-South wind direction and 𝑠𝑠 the East-West. We 
average the two coordinates separately across the periods of each day and all stations to yield 𝑐𝑐�  and �̅�𝑠. 
We then translate the direction into a 0 to 360 degree scale based on the signs of 𝑐𝑐�  and �̅�𝑠: 180 − 𝜃𝜃 if 
𝑐𝑐� < 0 and �̅�𝑠 > 0, 𝜃𝜃 − 180 if 𝑐𝑐� < 0 and �̅�𝑠 < 0, 360 − 𝜃𝜃 if 𝑐𝑐� > 0 and �̅�𝑠 < 0, and 𝜃𝜃 if 𝑐𝑐� < 0 and �̅�𝑠 > 0 
where 𝜃𝜃 = (180 𝜋𝜋⁄ ) ∗ 𝑐𝑐𝑠𝑠𝑒𝑒𝑒𝑒𝑐𝑐𝑜𝑜(𝑐𝑐� �̅�𝑠⁄ ). This is method 1 described at: 
http://www.ndbc.noaa.gov/wndav.shtml. 
18 Available at www.wunderground.com. 
19 A 2007 exchange rate of 7.6 is used throughout the paper. 

http://www.ncdc.noaa.gov/data-access
http://www.ndbc.noaa.gov/wndav.shtml
http://www.wunderground.com/
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We measure output as value added per worker which is common in the productivity 
(Syverson, 2011; Brandt et al., 2012) and temperature-productivity literature (Hsiang, 
2010; Dell et al., 2012). Firms report value added directly in the data and it equals 
total production (including both sales and inventory) of all goods produced in the 
year valued at their market prices less the cost of all intermediate inputs employed 
in producing them. Using aggregate measures of productivity requires that prices do 
not reflect market power in either the primary or upstream input markets. We 
cannot guarantee this; however, nearby-city pollution is independent of firm-level 
market power in the focal city allowing us to consistently estimate pollution’s effect 
on productivity via instrumented pollution. The mix of products is also not 
discernible from firm-level value added and may be correlated with local pollution 
levels. However, our instrumenting strategy also addresses this issue: nearby city 
pollution is uncorrelated with the product-mix decisions of a firm in the focal city 
thereby removing any bias in the instrumented results. Fu et al. (2018) contains more 
details on how we measure value added and deal with issues in using aggregate 
productivity measures. 

As explained below, we impose a maximum distance of 1,800 kilometers in 
estimating the spillover decay function and 300 kilometers in our causal estimates of 
productivity effects. After merging the productivity, API, and weather data for the 
spillover estimates, our data include 60 focal cities with 132,105 firms that represent 
26% of China’s population. The total annual output of these cities is CNY 2.02 trillion 
(11.7% of China’s annual GDP and 29% of China’s manufacturing sector).20 For our 
casual estimates, our data includes 88,716 firms in 47 focal cities with total annual 
output of CNY 1.35 trillion (7.8% of China’s annual GDP and 20% of China’s 
manufacturing sector). Although our sample of cities is not comprehensive these are 
major cities representing a significant fraction of manufacturing output and 
population. 

 

4. Results 

We report the first-step estimates (pollution decay function) followed by the second-
step estimates (causal effects of focal-city air pollution on focal-city productivity) and 
then combine the results from these two steps to calculate the spillover effects of 
nearby-city pollution on focal-city productivity. After this, we demonstrate the value 
of our M2SLS procedure. In particular, we show that estimating causal effects using 
2SLS with annual data produces insignificant second-stage results and unintuitive 
first-stage results. We offer supporting evidence that this is because aggregating the 
                                                           
20 China’s average annual real GDP over the seven-year sample period is CNY 17.27 trillion. The 
manufacturing sector accounts for roughly 40% of China’s GDP. 
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data to a lower frequency eliminates variation and introduces the possibility of 
confounding factors. 

4.1 Pollution decay function 

To estimate the pollution decay function we include all focal cities with at least one 
nearby city within 1,800 kilometers. This distance was chosen because it was far 
enough that the spillover effects were indistinguishable from zero. We use all cities 
that have daily API and weather data available from 2001 to 2007. This yields 60 
unique cities in an unbalanced panel because API data was not reported for some 
cities in the earlier years. There are some days with missing API or wind data but 
these are limited (all cities have at least 335 days of data in each year) and we believe 
are due to random non-reporting. 

Table 1 shows the summary statistics for the pollution spillover data. There are 2,586 
focal-nearby-city pairs (about 43 nearby cities for each focal city). If city B is a focal 
city for A then A is also a focal city for B. The focal cities’ PM10 levels average 96.9 
and exhibit significant variation. Wind blows toward the focal city on 52.1% of the 
days and PM10 is the dominant pollutant on 92% of the days for the focal cities. The 
mean distance between cities (1,009 kilometers) is about one-half the maximum 
allowed distance. 

[Insert Table 1 here] 

The solid, black line in Appendix E shows the 𝜆𝜆2𝑏𝑏 coefficients from estimating 
Equation (3) along with the 95% confidence interval in red, dashed lines. These are 
the effects of a one μg/m3 increase in PM10 in nearby cities conditional on wind 
blowing directly toward the focal city �𝜃𝜃𝑒𝑒𝑡𝑡

𝑓𝑓𝑛𝑛 = 0�. The effect in each distance band is 
conditional on holding PM10 in other bands constant. Roughly 25% of pollution 
drifts from nearby cities that are within 50 kilometers and more than 16% out to 250 
kilometers. 

The solid, black line in Figure 3 plots the effect of a one 𝜇𝜇g/m3 annual increase in 
nearby-city PM10 along with the 95% confidence interval in red, dashed lines. This 
adjusts the coefficients using the empirical distribution of 𝜃𝜃𝑒𝑒𝑡𝑡

𝑓𝑓𝑛𝑛. That is, for the fact 
that the wind blows toward the average focal city on only 52.1% of days in a year 
and does not always blow directly towards the focal city. Again, this is the effect of 
increasing PM10 in the distance band conditional on holding pollution constant in all 
other bands.21 The spillover effect within 50 kilometers is 0.116. That is, a one 𝜇𝜇g/m3 

                                                           
21 It would be useful to compare the local effect to spillovers from raising pollution in all nearby cities 
simultaneously. However, to do so using our estimates requires making arbitrary assumptions about 
the degree to which pollution from a nearby city affects other nearby cities that are between it and the 
focal city. Alternatively, one could estimate spillovers including interaction effects between each 
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annual increase in PM10 in all nearby cities within 50 kilometers, but not in any other 
distance band, increases annual focal city pollution by 0.116 𝜇𝜇g/m3. Similarly, a one 
𝜇𝜇g/m3 annual increase in PM10 in all nearby cities within 50 to 100 kilometers, but 
not in any other band, increases annual focal city pollution by 0.068 𝜇𝜇g/m3. A similar 
analysis applies to all the further distance bands. These effects are for the average 
focal city in the sample given average weather. Spillovers drop somewhat quickly 
and smoothly from 0.116 at 50 kilometers to 0.018 at 600 kilometers after which they 
fall more slowly to zero at about 1,000 kilometers. 

[Insert Figure 3 here] 

4.2 Randomness of daily wind data 

Before estimating the causal effect of pollution on productivity, we check the 
randomness of wind direction with respect to pollution. To ensure that the 
instrument is exogenous we must exclude days in which the wind does not blow 
from the nearby to the focal city. If wind direction is not randomly distributed with 
respect to the distribution of nearby-city air quality, conditional on control variables, 
this may bias the coefficients.22 Appendix F compares cumulative distribution 
functions (cdfs) of nearby-city air pollution conditional on the control variables used 
in the first stage of our M2SLS procedure for all days versus excluded days using the 
150-, 200-, 250-, and 300-kilometer distance cutoffs in choosing nearby cities. The cdfs 
are very similar for all cutoffs.23 

4.3 Effect of local air pollution on local labor productivity 

In this subsection we estimate the causal effect of focal-city pollution on focal-city 
labor productivity using nearby-city pollution as an instrument. In choosing which 
nearby cities to include, we check robustness to maximum distances from the focal 
city of 150, 200, 250, and 300 kilometers. There is a tradeoff as this distance increases. 
There are more data available to identify the effects thereby increasing their 
precision; however, the instrument is weaker because nearby-city pollution has less 
effect on focal-city pollution. Below 150 kilometers there were insufficient data to 

                                                                                                                                                                                     
distance band and all closer distance bands to estimate these “pass-through” effects. However, the 
number of independent variables required makes this infeasible with more than a few distance bands. 
22 This highlights the importance of the control variables. For example, in northern regions of China 
air quality is worse in the winter than in other seasons. If wind directions are systematically different 
in winter than other times of the year this will introduce bias in the absence of control variables. In 
this example, the region-by-year-by-month fixed effects should capture this region-specific 
seasonality. 
23 A two-sample Kolmogorov-Smirnov test rejects the null hypothesis of the equality of distributions 
at the 1% level for all four radiuses. However, the magnitude of the differences is very small: 0.031 for 
150-, 0.029 for 200-, 0.024 for 250-, and 0.027 for 300-kilometer radiuses. This is an example of 
Simpson’s Paradox in which a large amount of data results in statistical significance for even small 
differences. 
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identify effects and we show that beyond a distance of 300 kilometers the instrument 
is no longer powerful. Unlike the spillover estimates, we choose the nearest nearby 
city to the focal city, if one exists, within the maximum distance to maximize the 
instrument’s power. 

Table 2 shows summary statistics for the main variables for the 150- and 300-
kilometer radiuses. The top panel summarizes the first-stage data which are at the 
firm-day level. The summary statistics are fairly similar across the two distance 
cutoffs. The PM10 levels are high enough to potentially affect productivity. The 
annual mean is over 110 µg/m3 compared to a World Health Organization (WHO) 
recommended guideline of 20 µg/m3 annual average and many days exceed the 
WHO guideline of 25 µg/m3 for a 24-hour average (World Health Organization, 
2006). As the cutoff increases from 150 to 300 kilometers, the number of focal cities 
increases from 30 to 47. The average distance between nearby and focal cities does 
not increase much because we use the nearest nearby city for each focal city. The 
bottom panel summarizes the second-stage data which are at the firm-year level. The 
data exhibit significant variation in value-added per employee. Appendix G shows 
summary statistics for the 200- and 250-kilometer radiuses which are similar. 

[Insert Table 2 here] 

Panel A of Table 3 shows OLS results that do not address the endogeneity of air 
pollution. The firm-year data included here correspond to those included in the 
second stage of M2SLS estimation described below. For all four distance cutoffs, the 
coefficients on PM10 are insignificantly different from zero and for all but the 150-
kilometer the point estimates themselves are close to zero. This is consistent with 
either pollution having no effect on productivity or with an upward bias due to 
endogeneity. 

We now turn to M2SLS estimates. Panel B shows the results of estimating the first-
stage equation (Equation (4)) using PM10 of the focal city’s nearest nearby city as an 
instrument conditional on wind blowing toward the focal city within the middle 
funnel. This estimation is at the firm-day level and the wind is within the middle 
funnel on about one-fourth of the days. The results reveal a strong instrument. A one 
µg/m3 increase in a nearby city’s PM10 increases the focal city’s PM10 by between 
0.70 and 0.72 with a high level of significance.24 The Kleibergen-Paap Wald rk (KP) 

                                                           
24 These coefficients exceed even the estimates at distances below 300 kilometers in the spillover decay 
function because here we estimate using only the nearest nearby city and a narrower funnel.  
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F-statistic (Kleibergen and Paap, 2006) for weak identification significantly exceeds 
the Stock-Yogo critical value of 16.38 for all four cutoffs.25 

Panel C shows the second-stage estimates of Equation (5) at the firm-year level using 
the average values of the predicted pollution from the first stage as an instrument 
and controlling for weather and region-by-year fixed effects. The estimated 
coefficients of PM10 are negative and significant for all but the 150-kilomoter cutoff 
which is significant at the 12% level. The estimates become more significant as the 
cutoff increases consistent with more data used in estimation. The coefficients are 
fairly consistent across the four cutoffs and imply that a one µg/m3 annual increase 
in PM10 decreases productivity by 0.25 to 0.31%. Evaluated at the mean focal-city 
PM10 in each subsample, these estimates imply elasticities of labor productivity with 
respect to air pollution of -0.26 to -0.32. 

These results are consistent with the instrument attenuating an upward endogeneity 
bias. The results also imply that improving air quality generates substantial 
productivity benefits. Using the 300-kilometer cutoff data and estimates, a 1% 
reduction in PM10 increases per-firm productivity for the average firm by CNY 4,613 
(USD 607) annually. Throughout the remainder of the paper we use the 300-
kilometer estimate as our preferred since it is the most significant and is close to the 
midpoint of the estimates from the four cutoffs. 

[Insert Table 3 here] 

Appendix H contains robustness checks of our estimates using the 300-kilometer 
cutoff. Column 1 reproduces our baseline estimates using the middle funnel. 
Column 2 uses a narrow funnel (an 80° arc). The point estimate is slightly smaller 
and is significant only at the 12% level due to the loss of data in the first stage. 
Employing a broad funnel (a 100° arc) in Column 3 produces a more significant 
result and somewhat larger effect than the baseline estimate. Dropping days with 
API below 50, for which the major pollutant is unknown, lowers the coefficient 
somewhat (Column 4). This is presumably due to years with a relatively high 
number of low-pollution days corresponding to years with a relatively high 
proportion of high-productivity days. Columns 5 and 6 evaluate the influence of 
fixed effects. Including year-by-month rather than region-by-year-by-month fixed 
effects in the first stage (Column 5) yields almost identical results to the baseline 
while including region-by-year fixed effects in the first stage results in somewhat 

                                                           
25 Stock and Yogo (2005) critical values apply when model errors are independent and identically 
distributed. No critical values are available for the case when the model allows for standard errors 
that are robust to heteroskedasticity and clustering. 
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different estimates (Column 6).26 Therefore, the estimates are more sensitive to 
controlling for overall seasonality than region-specific seasonality. 

Appendix I provides supporting evidence for our choice of 300 kilometers as the 
maximum distance for the nearest nearby city to include as an instrument. Column 1 
estimates M2SLS using as an instrument pollution in the nearest nearby city for each 
focal city that is further than 300 but less than 350 kilometers away and using the 
middle funnel in defining whether wind blows toward the focal city. The first-stage 
results in Panel A reflect the reduced power of the instrument. The coefficient is 
about half that in the baseline estimates and the KP F-statistic is much lower. The 
second-stage coefficient (Panel B) is negative but about half the magnitude of the 
baseline estimates and insignificant. Columns 2 through 4 expand the data by 
increasing the range of distances for the nearest nearby cities. The first-stage 
estimates remain similar and the second-stage coefficients remain insignificant 
consistent with a weak instrument. 

4.4 Spillover effect of nearby-city pollution on focal-city labor productivity 

As shown in Section 2.1, multiplying the first-step spillover decay function by the 
second-step causal effects yields the spillover effects of nearby-city pollution on 
focal-city productivity. To obtain appropriate standard errors clustered at the city 
level for these spillover effects we employ a block bootstrap with 100 iterations.27 We 
estimate this using a 300-kilometer cutoff and middle funnel for the instrument in 
the M2SLS estimation. 

Figure 4 summarizes the results converting them to the monetary impact for the 
average firm’s annual productivity on an average weather day. The solid, black line 
shows the effect of a one μg/m3 annual increase in nearby-city PM10 in that distance 
band (holding pollution in all other bands constant) on focal-city productivity with 
95% confidence intervals shown in dashed, red lines. Since these are annual 
productivity effects this assumes a one μg/m3 increase in nearby-city PM10 for the 
entire year and for the empirical distribution of wind direction across the year. The 
costs are CNY 535 (USD 70) for nearby cities within 50 kilometers and decline fairly 
quickly and smoothly to CNY 83 (USD 11) for nearby cities at 550 to 600 kilometers. 
Beyond this, the spillovers decline slowly to approach zero at about 1,000 kilometers. 
In comparison the effect of local sources of PM10 on productivity is CNY 4,613 (USD 
607). 

                                                           
26 We experimented with using province-by-year-by-month fixed effects but the model was too 
saturated. There is an average of only 1.5 cities per province in the data. 
27 Specifically, for each iteration we draw (with replacement) a block bootstrap by city. In the first step 
(spillover decay function) we use all days in all years for these cities. In the second step (causal effects) 
we use all firms and all days in all years for the sampled cities. 
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[Insert Figure 4 here] 

While the spillover decay function estimates alone tells us the relative tradeoff 
between local and extra-territorial effects, they do not tell us the absolute amounts at 
stake. This requires both steps of our procedure. For example, if PM10 increases by 
one μg/m3 annually in both a focal city and a nearby city located at 125 kilometers, 
productivity falls by CNY 4,613 annually for the average firm due to local sources of 
pollution and another CNY 318 due to imported pollution. The latter is smaller 
because pollution dissipates as it drifts and the wind blows directly toward the focal 
city only part of the time. 

These results can also be used to calculate Coasian prices. Consider Tianjin which is 
located 107 kilometers from Beijing and let 𝜃𝜃𝑒𝑒𝑡𝑡𝐵𝐵𝐵𝐵 be the angle of the wind relative to 
the ray from Tianjin to Beijing. If each city were assigned rights to keep its city free 
of other cities’ air pollution, Tianjin would have to compensate Beijing CNY 
2.41*𝑐𝑐𝑏𝑏𝑠𝑠[𝑒𝑒𝑠𝑠𝑠𝑠(𝜃𝜃𝑒𝑒𝑡𝑡𝐵𝐵𝐵𝐵)] times the number of firms in Beijing on each day when −90° ≤
𝜃𝜃𝑒𝑒𝑡𝑡𝐵𝐵𝐵𝐵 ≤ 90°. This is the 𝜆𝜆2𝑏𝑏 coefficient from Equation (3) multiplied by the annual 
causal effect converted to a daily cost.28 Similarly, on days when the wind blows 
toward Tianjin, Beijing would have to compensate Tianjin 2.41*𝑐𝑐𝑏𝑏𝑠𝑠[𝑒𝑒𝑠𝑠𝑠𝑠(𝜃𝜃𝑒𝑒𝑡𝑡𝐵𝐵𝐵𝐵)] times 
the number of firms in Tianjin for each μg/m3 of PM10 that Beijing produces on a day 
when the wind blows between −90° ≤ 𝜃𝜃𝑒𝑒𝑡𝑡𝐵𝐵𝐵𝐵 ≤ 90°where 𝜃𝜃𝑒𝑒𝑡𝑡𝐵𝐵𝐵𝐵 is the angle of the wind 
relative to the ray from Beijing to Tianjin. 

4.5 Wald (2SLS) estimates 

An alternative to our M2SLS procedure is to combine our first-step estimates of the 
pollution decay function using daily data with causal estimates based on Wald 
(2SLS). Estimating 2SLS requires aggregating the first-stage data to match the annual 
data used in the second stage. We aggregate the first-stage data by taking firm-year 
averages conditional on wind blowing toward the focal city (i.e., computing mean 
values of focal-city pollution, cosine-weighted nearby-city pollution, and weather 
control variables using only days when the wind blows toward the focal city). We 
also include firm and region-by-year fixed effects and cluster standard errors by 
focal city to be consistent with our M2SLS estimates. Table 4 shows the results at the 
different distance cutoffs using the middle funnel. The coefficients for the first-stage 
results (Panel A) are all significant but are opposite of the expected sign. The results 
also suggest weak instruments with all of the KP F-statistics below the critical value 
of 16.38. The second-stage coefficients in Panel B are insignificant. This is consistent 

                                                           
28 The 𝜆𝜆2𝑏𝑏 coefficient is 0.191 for nearby cities between 100 and 150 kilometers away. The annual 
causal effect is CNY 4,613 or CNY 12.6 on a daily basis. Multiplying these two numbers yields CNY 
2.41. 



 
 

23 
 

with lack of sufficient variation to precisely identify the coefficients29 or endogeneity 
bias introduced by confounding factors at the annual level or both. We now 
investigate this further. 

[Insert Table 4 here] 

Table 5 shows how the level of aggregation in the first-stage affects the estimates of 
the causal effects of pollution on productivity (second-stage estimates are all at the 
firm-year level). These estimates use the 300-kilometer cutoff in choosing the 
nearest-nearby city, apply the middle funnel in choosing which days to include in 
the first-stage, and include the same controls as our baseline estimates except that 
region-year fixed effects are used rather than region-by-year-by-month.30 Column 1 
of the table uses firm-day data in the first stage conditional on wind blowing toward 
the focal city. This specification is the same as the baseline except that region-year 
fixed effects are used.31 Column 2 aggregates the first-stage data to the weekly level 
conditional on wind direction (i.e., averages all days when wind is blowing toward 
the focal city across each week). Columns 3, 4, 5, and 6 aggregate in a similar way to 
the monthly, quarterly, semiannual, and annual levels (the last is the Wald estimates 
discussed above). 

Fairly clear patterns emerge as the level of aggregation is increased. The first-stage 
coefficient declines in magnitude (and turns negative with annual aggregation) 
consistent with less variation or confounding factors in aggregated pollution levels.32 
The second-stage coefficients become less significant and are insignificant with 
aggregation at frequencies lower than weekly (weekly aggregation appears to be 
sufficient to achieve identification). These results suggest that aggregating data to a 
lower-frequency in the reduced-form and 2SLS estimations faces one or both of two 
issues. First, it provides insufficient variation to identify the relationship between 
focal- and nearby-city pollution. Second, it introduces the possibility of confounding 
factors, in particular seasonal shocks to productivity. This is also consistent with the 

                                                           
29 Assuming that 2SLS estimates are unbiased, Dhrymes and Lleras-Muney (2006) show that M2SLS 
estimates could be more or less efficient than 2SLS. M2SLS is more efficient because it uses 
disaggregated data in the first stage thereby utilizing more information; however, the grouping of the 
first-stage predicted values changes the nature of the first stage errors and their relationship to the 
second-stage errors which could decrease efficiency. 
30 Region-by-year-by-month fixed effects are not used since they cannot be included once data is 
aggregated for periods longer than one month. 
31 As we showed in our robustness checks (Appendix H), the causal effects are somewhat lower using 
region-by-year fixed effects than in our baseline estimates using region-by-year-by-month fixed 
effects. 
32 The negative coefficient at the annual level could occur because production cost shocks in a city led 
to production being diverted to a nearby city on an annual basis or, alternatively, binding 
environmental regulations in a city led to production being shifted to a nearby city on an annual basis. 
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results in Column 5 of Appendix H that show the importance of including year-by-
month fixed effects to control for seasonality. 

[Insert Table 5 here] 

In summary, the daily data utilized in our M2SLS approach appear necessary to 
generate sufficient variation for identification and to avoid endogeneity bias. 

 

5. Conclusion 

We provide a methodology for estimating the causal effect of air pollution spillovers 
on outcomes that are measured with lower frequency than pollution and weather 
data. Measuring air pollution spillovers requires high-frequency (such as daily) data 
to ensure that shifts in wind direction are properly captured, but outcome variables 
are often available on only an annual basis. 

We proceed by estimating the pollution decay function at high frequency separately 
from the causal effects and estimating the causal effects using a mixed two-stage 
least squares (M2SLS) procedure using high-frequency changes in imported 
pollution from nearby cities as an instrument. The M2SLS procedure allows high-
frequency data for the instrumenting (necessary for isolating high-frequency shifts in 
wind direction) in the first stage but low-frequency outcome data in the second stage. 
This estimation is a natural by-product of estimating the spillover decay function 
since this also requires high-frequency wind and pollution data. We show that 
typical 2SLS fails in estimating causal effects due to the aggregation of pollution data 
over a long period and the resulting loss of variation and endogeneity issues 
introduced with low-frequency data. 

Use of high-frequency data also allows spillovers to be examined at relatively short 
distances while minimizing the chance of spurious correlation from regional and 
seasonal shocks to the outcome variable. This allows an examination of spillovers 
between cities that are geographically close but administratively distinct and 
therefore potentially suffer from a free-rider problem in pollution production. 

While we illustrate quantification of spillover effects on productivity, our procedure 
can easily be adapted to estimate the spillover effects on any outcome for which data 
is of a lower frequency than pollution and weather data. For example, if only annual 
health measures are available our instrumenting technique works as long as daily 
pollution and weather data are available. It is also potentially applicable to 
estimating outcomes over longer periods than one year. 
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While previous papers document the presence of spillovers, our paper specifically 
quantifies how their intensity varies with distance— a necessary input for 
determining the scope of administrative control necessary to internalize externalities. 
PM10 spillovers are large and extend quite far suggesting the need to coordinate 
environmental policies at the supra-provincial level. 
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Figure 1: Example of wind directions between nearby and focal city included in pollution 
decay function estimation 

 

 

Figure 2: Example of wind directions included in estimating the causal effects of pollution 
on productivity (middle funnel) 
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Figure 3: Pollution decay function (effect of one μg/m3 annual increase in nearby-city PM10 within a distance band on annual focal-
city PM10) as a function of distance 

   
Solid, black line shows effect of a one μg/m3 annual increase in nearby-city PM10 within a distance band (holding pollution in all other distance bands constant) on 
annual focal-city PM10 as a function of distance controlling for weather variables, focal-city fixed effects, and region-by-year-by-month fixed effects. Estimation 
allows for piecewise linear effects in increments of 50 kilometers. Effects are adjusted for the empirical distribution of wind directions during the year. Dashed, red 
lines show 95% confidence intervals estimated using 100 iterations of a block bootstrap by focal city. 
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Figure 4: Air pollution spillover effects from a one μg/m3 annual increase in nearby-city PM10 within a distance band on average 
annual labor productivity of focal-city firms as a function of distance 

  
Solid, black line shows effect of a one μg/m3 annual increase in nearby-city PM10 within a distance band (holding pollution in all other distance bands constant) on 
average annual productivity of focal-city firms as a function of distance estimated by the two-step procedure described in the text. Estimation allows for piecewise 
linear effects in increments of 50 kilometers. Effects are adjusted for the empirical distribution of wind directions during the year. Dashed, red lines show 95% 
confidence intervals estimated using 100 iterations of a block bootstrap by focal city. 
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Table 1: Summary statistics for pollution decay function estimation 2001 to 2007 

  

 

 

(1) (2) (3) (4)
Mean Std. dev. Min Max

Focal city PM10 (μg/m3) 96.9           58.3           8.0              600.0         
Distance between focal/nearby city (km) 1,008.7      443.8         44.0           1,799.2      
Nearby cities per focal city 43.1           11.8           2.0              56.0           
Fraction of days wind toward focal city
Fraction of days API = PM10

# of focal/nearby cities
# of focal-nearby city-year pairs

Summary statistics for data used in estimation of spillover decay function (N = 1,742,503).

2,586
60

52.1%
91.9%



 
 

Table 2: Summary statistics for M2SLS estimation 2001 to 2007 (150- and 300-kilometer maximum radiuses) 

   

(1) (2) (3) (4) (5) (6) (7) (8)
Mean Std. dev. Min Max Mean Std. dev. Min Max

First-stage sample (firm-day)

Focal city PM10 (μg/m3) 111.5         69.0           10.0           600.0         110.4         67.8           10.0           600.0         

Nearby city PM10 (μg/m3) 97.4           65.2           11.0           600.0         97.2           63.3           11.0           600.0         
Distance between focal/nearby city (km) 89.4           28.6           44.0           143.8         106.6         50.9           44.0           291.8         
# of city-years
# of focal cities

Second-stage sample (firm-year)

Value added (CNY1,000) 15,181.5   27,121.6   105.7         357,934.3 15,269.8   27,296.6   101.3         366,425.6 
Total workers 166.9         244.7         10.0           3,012.0      171.6         252.9         10.0           3,012.0      
Value added per worker (CNY1,000) 119.7         216.2         0.5              16,247.6   118.9         219.9         0.1              16,247.6   
# of firms

166
47

(N = 291,339)

88,716

(N = 19,895,822)

75,390

(N = 243,368)

30
103

(N = 16,811,104)

Summary statistics for data used in M2SLS estimation of causal effect of local air pollution on local firms' labor productivity.

150 kilometers proximity 300 kilometers proximity



 
 

Table 3: Effect of local PM10 on local labor productivity – OLS and M2SLS estimates using 
nearest-nearby city pollution within middle funnel and different maximum distances as 
an instrument 

   

(1) (2) (3) (4)

150 km 200 km 250 km 300 km
Panel A: OLS (firm-year sample)
Dependent variable:
Mean annual focal city PM10 -0.0017 -0.0003 -0.0004 -0.0003

(0.0015) (0.0014) (0.0013) (0.0014)

R2 0.0734 0.0776 0.0739 0.0837
Sample size 243,368 264,746 276,528 291,339
Panel B: M2SLS first stage (firm-day sample)
Dependent variable:
Daily nearby city PM10 0.7189*** 0.7041*** 0.7019*** 0.6970***

(0.0746) (0.0699) (0.0678) (0.0661)

Fraction of days wind toward focal city 0.247 0.250 0.251 0.247
KP F -statistic 92.9 101.5 107.2 111.1
# cities 30 40 44 47
Sample size 16,811,104 18,447,882 19,378,068 19,895,822
Panel C: M2SLS second stage (firm-year sample)
Dependent variable:
Mean annual predicted focal city PM10 -0.0025 -0.0025* -0.0031** -0.0029**

(0.0016) (0.0013) (0.0016) (0.0014)

Implied elasticity -0.260 -0.259 -0.320 -0.302
# firms 75,390 82,714 86,941 88,716
Sample size 243,368 264,746 276,528 291,339

Data included in Panel A corresponds to firm-year data included in Panel C. First stage 
models include firm and region-by-year-by-month fixed effects; linear and quadratic terms 
of daily humidity, wind speed, and rain; and categorial variables for temperature bins as 
described in the text. The OLS and second-stage models include firm and region-by-year 
fixed effects; annual averages of linear and quadratic terms of daily humidity, windspeed, 
and rain; and annual counts of the daily categorial variables for temperature (i.e., number 
of days temperature is in each bin). Standard errors are clustered at the city level in all 
models and reported in parentheses. *** p<0.01, ** p<0.05, * p<0.1. Standard errors in 
Panel C are also adjusted for two-stage estimation using 100 block-bootstrap iterations.

ln(value added/worker)

Daily focal city PM10

ln(value added/worker)

Maximum distance cutoff



 
 

Table 4: Wald (2SLS) estimates of causal effect of local PM10 on local labor productivity using as 
an instrument pollution of nearest-nearby city within different maximum distances 

   

 

 

(1) (2) (3) (4)

150 km 200 km 250 km 300 km
Panel A: 2SLS first stage (firm-year sample)
Dependent variable:
Mean annual nearby city PM10 (conditional -0.1810* -0.2040*** -0.1857** -0.2114***
     on wind blowing toward focal city) (0.0931) (0.0731) (0.0722) (0.0618)

KP F -statistic 3.8 7.8 6.6 11.7
# cities 30 40 44 47
Sample size 243,368 264,746 276,528 291,339

Dependent variable:
Mean annual predicted focal city PM10 0.0012 0.0029 0.0050 0.0043

(0.0062) (0.0062) (0.0069) (0.0051)

# firms 75,390 82,714 86,941 88,716
Sample size 243,368 264,746 276,528 291,339

All models include include firm and region-by-year fixed effects; annual averages of linear 
and quadratic terms of daily humidity, windspeed, and rain; and annual counts of the daily 
categorial variables for temperature (i.e., number of days in each temperature bin). Standard 
errors are clustered at the focal-city level in all models and reported in parentheses. *** p<0.01, 
** p<0.05, * p<0.1. Standard errors in Panel B are also adjusted for two-stage estimation.

Panel B: 2SLS second stage (firm-year sample)

Maximum distance cutoffs

Mean annual focal city PM10

Focal city ln(value added/worker)



 
 

Table 5: M2SLS estimates of causal effect of local PM10 on local labor productivity at different levels of aggregation in the first stage 
compared to Wald (2SLS) estimates 

   

(1) (2) (3) (4) (5) (6)

Panel A: First stage: Firm-Day Firm-Week
Firm-

Month
Firm-

Quarter
Firm-Semi-

Annual Firm-Year
M2SLS M2SLS M2SLS M2SLS M2SLS 2SLS

Dependent variable:
Nearby city PM10 0.7580*** 0.7070*** 0.7437*** 0.6112*** 0.5190*** -0.2114***

(0.0814) (0.0749) (0.1121) (0.0716) (0.0621) (0.0618)

Fraction of days wind toward focal city 0.247 0.247 0.247 0.247 0.247 0.247
KP F -statistic 86.6 86.2 44.1 73.0 69.8 11.7
# cities 47 47 47 47 47 47
Sample size 19,895,822 9.347,823 3,261,047 1,190,654 596,972 291,339
Panel B: second stage (firm-year sample)
Dependent variable:
Mean annual predicted focal city PM10 -0.0022** -0.0024* -0.0016 -0.0018 -0.0019 0.0043

(0.0011) (0.0012) (0.0013) (0.0017) (0.0017) (0.0051)

# firms 88,716 88,716 88,716 88,716 88,716 88,716
Sample size 291,339 291,339 291,339 291,339 291,339 291,339

Focal city PM10

ln(value added/worker)

All columns use the middle funnel in choosing days when wind blows toward focal city and 300-kilometer radius and exclude 
days when API is between 95 and 105. Columns 1 through 5 use M2SLS to estimate at different levels of aggregation in the first 
stage - daily in Column 1, weekly in Column 2, monthly in Column 3, quarterly in Column 4, and semi-annually in Column 5 - 
and data at the annual level in the second stage. Column 6 estimates using Wald 2SLS with data at the annual level in both 
stages. First-stage models include firm and region-by-year fixed effects; linear and quadratic terms of daily humidity, wind 
speed, and rain; and categorial variables for temperature bins as described in the text aggregated to the corresponding level. 
Second-stage models include firm and region-by-year fixed effects; annual averages of linear and quadratic terms of daily 
humidity, windspeed, and rain; and annual counts of the daily categorial variables for temperature (i.e., number of days 
temperature is in each bin). Standard errors are clustered at the city level in all models and reported in parentheses. *** p<0.01, 
** p<0.05, * p<0.1. Second-stage standard errors are also adjusted for two-stage estimation. In Columns 1 through 5 this is done 
using 100 block-bootstrap iterations.

Middle funnel, 300-kilometer maximum distance cutoff



 
 

Online Appendix A: Distribution of day-to-day wind direction changes for all cities included 
in estimating the spillover decay function 2001 – 2007 (60 focal cities, N = 56,177) 

 

 

  

Difference in wind 
direction day-to-day 

(degrees)
Percentage of 

days
Cumulative 
percentage

10 17.6% 17.6%
20 13.5% 31.1%
30 10.5% 41.6%
40 8.5% 50.1%
50 6.6% 56.7%
60 5.5% 62.2%
70 4.8% 67.0%
80 4.1% 71.1%
90 3.6% 74.7%

100 3.3% 78.0%
110 3.3% 81.3%
120 2.9% 84.2%
130 2.8% 87.0%
140 2.7% 89.7%
150 2.6% 92.3%
160 2.5% 94.8%
170 2.6% 97.4%
180 2.6% 100.0%

Percentage of days that wind direction changes day-
to-day in ten-degree brackets. Includes all cities and 
days used in estimating the spillover decay function. 



 
 

Online Appendix B: Definition of regions 

 

 

Online Appendix C: Map of cities included in analysis 

 
Map shows all cities used in spillover decay function estimation. 

 

 

  

Geographic regions Provinces
North Beijing, Tianjin, Hebei, Shanxi, Nei Mongol
Northeast Liaoning, Jilin, Heilongjiang
East Shanghai, Jiangsu, Zhejiang, Anhui, Fujian, Jiangxi, Shandong
Central Henan, Hubei, Hunan
South Guangdong, Guangxi, Hainan
Southwest Chongqing, Sichuan, Guizhou, Yunan, Xizang (Tibet)
Northwest Shaanxi, Gansu, Qinghai, Ningxia Hui, Xinjiang Uygur

Based on Zhang et al . (2018).



 
 

Online Appendix D: Conversion from API to PM10 

 

 

 

API PM10 Conversion formula
0 – 50 0 – 50 API = PM10

50 – 200 50 – 350 API = (1/2)*PM10 + 25
200 – 300 350 – 420 API = (10/7)*PM10 – 300
300 – 400 420 – 500 API = (5/4)*PM10 – 225
400 – 500 500 – 600 API = PM10 – 100

Based on Andrews (2008).



 
 

Online Appendix E: Coefficients and confidence intervals for estimate of spillover decay function (effect of one μg/m3 increase in 
nearby-city PM10 within a distance band on focal-city PM10 when wind blows directly toward the focal city) as a function of 
distance 

 
Solid, black line shows effect of a one μg/m3 increase in nearby-city PM10 within a distance band (holding pollution in all other distance bands constant) on focal-
city PM10 when the wind is blowing directly toward the focal city as a function of distance controlling for weather variables, focal-city fixed effects, and region-by-
year-by-month fixed effects. Estimation allows for piecewise linear effects in increments of 50 kilometers. Dashed, red lines show 95% confidence intervals 
estimated using 100 iterations of a block bootstrap by focal city. 
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Online Appendix F: Cumulative distribution functions of all days versus included days of 
nearby-city air pollution conditional on control variables at different maximum distance 
cutoffs 

150-kilometer radius 

 
Cumulative distribution functions of residuals from regressing nearby-city PM10 on the control variables used in the 
first stage of the M2SLS procedure (daily weather controls, city fixed effects, and region-by-year-by-month fixed 
effects) separately for all days and included days using a 150-kilometer cutoff in choosing nearby cities. 

200-kilometer radius 

 
Cumulative distribution functions of residuals from regressing nearby-city PM10 on the control variables used in the 
first stage of the M2SLS procedure (daily weather controls, city fixed effects, and region-by-year-by-month fixed 
effects) separately for all days and included days using a 200-kilometer cutoff in choosing nearby cities. 
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250-kilometer radius 

 
Cumulative distribution functions of residuals from regressing nearby-city PM10 on the control variables used in the 
first stage of the M2SLS procedure (daily weather controls, city fixed effects, and region-by-year-by-month fixed 
effects) separately for all days and included days using a 250-kilometer cutoff in choosing nearby cities. 

 

300-kilometer radius 

 
Cumulative distribution functions of residuals from regressing nearby-city PM10 on the control variables used in the 
first stage of the M2SLS procedure (daily weather controls, city fixed effects, and region-by-year-by-month fixed 
effects) separately for all days and included days using a 300-kilometer cutoff in choosing nearby cities. 
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Online Appendix G: Summary statistics for M2SLS estimation 2001 to 2007 (200- and 250-kilometer radiuses) 

 

 

 

(1) (2) (3) (4) (5) (6) (7) (8)
Mean Std. dev. Min Max Mean Std. dev. Min Max

First-stage sample (firm-day)

Focal city PM10 (μg/m3) 111.0         68.5           10.0           600.0         110.1         67.9           10.0           600.0         

Nearby city PM10 (μg/m3) 97.4           64.2           11.0           600.0         96.8           63.4           11.0           600.0         
Distance between focal/nearby city (km) 96.2           35.3           44.0           193.0         102.1         43.5           44.0           234.7         
# of city-years
# of focal cities

Second-stage sample (firm-year)

Value added (CNY1,000) 15,317.6   27,318.0   105.7         366,425.6 15,349.9   27,353.5   105.7         366,425.6 
Total workers 168.7         247.9         10.0           3,012.0      169.2         248.8         10.0           3,012.0      
Value added per worker (CNY1,000) 120.3         221.4         0.5              16,247.6   120.6         222.5         0.5              16,247.6   
# of firms

200 kilometers proximity 250 kilometers proximity

Summary statistics for data used in M2SLS estimation of causal effect of local air pollution on local firms' labor productivity.
82,714

(N = 264,746)

(N = 18,447,882)

40
135 149

44

(N = 276,528)

86,941

(N = 19,378,068)



 
 

Online Appendix H: Robustness checks – M2SLS estimates of causal effect of local PM10 on local 
labor productivity using as an instrument pollution of nearest-nearby city within 300 
kilometers 

 

 

 

  

(1) (2) (3) (4) (5) (6)

"Middle" 
Funnel 

(Baseline)
"Narrow" 

Funnel
"Broad" 
Funnel

Drop API 
Below 50 
"Middle" 

Funnel

Year-by-
Month 
Fixed 

Effects

Region-by-
Year Fixed 

Effects
Panel A: M2SLS first stage (firm-day sample)
Dependent variable:
Daily nearby city PM10 0.6970*** 0.6956*** 0.6931*** 0.6700*** 0.7069*** 0.7580***

(0.0661) (0.0675) (0.0621) (0.0672) (0.0783) (0.0814)

Fraction of days wind toward focal city 0.247 0.217 0.274 0.249 0.247 0.247
KP F -statistic 111.1 106.1 124.7 99.4 81.4 86.6
# cities 47 47 47 47 47 47
Sample size 19,895,822 17,490,841 22,070,792 15,427,187 19,895,822 19,895,822
Panel B: M2SLS second stage (firm-year sample)
Dependent variable:
Mean annual predicted focal city PM10 -0.0029** -0.0025 -0.0038** -0.0021** -0.0029*** -0.0022**

(0.0014) (0.0016) (0.0015) (0.0010) (0.0011) (0.0011)

Implied elasticity -0.302 -0.260 -0.396 -0.219 -0.302 -0.229
# firms 88,716 88,716 88,716 88,716 88,716 88,716
Sample size 291,339 291,339 291,339 291,339 291,339 291,339

"Middle Funnel"

Daily focal city PM10

ln(value added/worker)

Columns 1, 4, 5, and 6 apply the middle funnel in choosing days when wind blows toward focal city; Column 2 uses 
the narrow funnel; and Column 3 the broad funnel. All columns include firm fixed effects and linear and quadratic 
terms of daily humidity, wind speed, and rain; and categorial variables for temperature bins as described in the text in 
the first stage. Columns 1 through 4 also include region-by-year-by-month fixed effects; Column 5 also includes year-
by-month fixed effects; and Column 6 also includes region-by-year fixed effects. Second stage models include firm and 
region-by-year fixed effects in Columns 1 through 4 and 6 and firm and year fixed effects in Column 5. All second-
stage models include annual averages of linear and quadratic terms of daily humidity, windspeed, and rain; and 
annual counts of the daily categorial variables for temperature (i.e., number of days in each temperature bin). 
Standard errors are clustered at the city level in all models and reported in parentheses. *** p<0.01, ** p<0.05, * p<0.1. 
Standard errors in Panel B are also adjusted for two-stage estimation using 100 block-bootstrap iterations.

Region-by-Year-by-Month Fixed Effects



 
 

Online Appendix I: Counterfactual estimates – M2SLS estimates of causal effect of local PM10 on 
local labor productivity using as an instrument pollution of nearest nearby city at 
distances beyond 300 kilometers 

    

 

 

(1) (2) (3) (4)

300 - 300 - 300 - 300 -
350 km 400 km 450 km 500 km

Panel A: M2SLS first stage (firm-day sample)
Dependent variable:
Daily nearby city PM10 0.4076*** 0.3677*** 0.3961*** 0.3949***

(0.0842) (0.0700) (0.0565) (0.0533)

Fraction of days wind toward focal city 0.210 0.228 0.201 0.201
KP F -statistic 23.4 27.6 49.2 54.8
# cities 31 40 45 49
Sample size 7,754,583 11,461,789 14,719,147 15,255,340
Panel B: M2SLS second stage (firm-year sample)
Dependent variable:
Mean annual predicted focal city PM10 -0.0015 0.0013 0.0035 0.0038

(0.0036) (0.0025) (0.0028) (0.0024)

# firms 47,564 60,945 81,302 83,921
Sample size 142,774 192,403 272,753 281,037
Column 1 uses as an instrument the nearest nearby city beyond 300 kilometers but below 
350 kilometers and the middle funnel. Columns 2 through 4 increase the maximum 
distances to 400, 450, and 500 kilometers respectively. First-stage models include firm and 
region-by-year-by-month fixed effects; linear and quadratic terms of daily humidity, wind 
speed, and rain; and categorial variables for temperature bins as described in the text. The 
OLS and second stage models include firm and region-by-year fixed effects; annual 
averages of linear and quadratic terms of daily humidity, windspeed, and rain; and 
annual counts of the daily categorial variables for temperature (i.e., number of days 
temperature is in each bin). Standard errors are clustered at the city level in all models and 
reported in parentheses. *** p<0.01, ** p<0.05, * p<0.1. Standard errors in Panel B are also 
adjusted for two-stage estimating using 100 block-bootstrap iterations.

Daily focal city PM10

ln(value added/worker)

Distance cutoffs
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