(ロ) (同) (三) (三) (三) (○) (○)

Pollution Mitigation and Productivity: Evidence from Chinese Manufacturing Firms

Gautam Gowrisankaran¹ Michael Greenstone² Ali Hortaçsu³ Mengdi Liu⁴ Caixia Shen⁵ Bing Zhang⁶

¹University of Arizona, HEC Montreal and NBER

²University of Chicago and NBER

³University of Chicago and NBER

⁴University of International Business and Economics

⁵Shanghai University of Finance and Economics

⁶Nanjing University

October, 2019

• China has experienced a huge economic growth over the past 20 years

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

- China has experienced a huge economic growth over the past 20 years
- But a cost of development has been air and water pollution

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

- China has experienced a huge economic growth over the past 20 years
- But a cost of development has been air and water pollution
- As China has gotten richer, more demand/many policies to reduce pollution

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三■ - のへぐ

- China has experienced a huge economic growth over the past 20 years
- But a cost of development has been air and water pollution
- As China has gotten richer, more demand/many policies to reduce pollution
- Pollution remains a huge problem in China

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

- China has experienced a huge economic growth over the past 20 years
- But a cost of development has been air and water pollution
- As China has gotten richer, more demand/many policies to reduce pollution
- Pollution remains a huge problem in China
- May be costly to mitigate

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

- China has experienced a huge economic growth over the past 20 years
- But a cost of development has been air and water pollution
- As China has gotten richer, more demand/many policies to reduce pollution
- Pollution remains a huge problem in China
- May be costly to mitigate
- Lessons are also valuable for other developing countries

Introduction

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Goals of this paper

- To evaluate whether Chinese policies to lower pollution have been successful
- Or a construction of the productivity cost of these policies for manufacturing firms

Environmental regulation policy: discharge fees

 Pollution discharge fees started in 1979, but considered ineffective until a 2003 state order

Environmental regulation policy: discharge fees

- Pollution discharge fees started in 1979, but considered ineffective until a 2003 state order
- Fees assessed for four pollutants
 - Air pollutants: sulfur dioxide (SO₂) and nitrous oxides (NOx)
 - Water pollutants: chemical oxygen demand (COD) and nitrogen-ammonia (NH3-N)
 - use SO₂ and COD in this talk
 - NO_X and SO₂ fees similar
 - COD and NH3-N fees similar

Environmental regulation policy: discharge fees

- Pollution discharge fees started in 1979, but considered ineffective until a 2003 state order
- Fees assessed for four pollutants
 - Air pollutants: sulfur dioxide (SO₂) and nitrous oxides (NOx)
 - Water pollutants: chemical oxygen demand (COD) and nitrogen-ammonia (NH3-N)
 - use SO₂ and COD in this talk
 - NO_X and SO₂ fees similar
 - COD and NH3-N fees similar

• In 2003, fees were uniform across provinces:

- 0.63 CNY / KG of SO₂
- 0.74 CNY / KG of COD

Environmental regulation policy: discharge fees

- Pollution discharge fees started in 1979, but considered ineffective until a 2003 state order
- Fees assessed for four pollutants
 - Air pollutants: sulfur dioxide (SO₂) and nitrous oxides (NOx)
 - Water pollutants: chemical oxygen demand (COD) and nitrogen-ammonia (NH3-N)
 - use SO₂ and COD in this talk
 - NO_X and SO₂ fees similar
 - COD and NH3-N fees similar
- In 2003, fees were uniform across provinces:
 - 0.63 CNY / KG of SO2
 - 0.74 CNY / KG of COD
- By 2017, fees are very different across provinces:
 - Between 1.3 and 11 CNY / KG for SO₂
 - Between 1.5 and 10.5 CNY / KG for COD

Environmental regulation policy: discharge fees

Reasons for fee differences across provinces:

- Provinces were free to raise fees above national standards
- Some provinces did while nearby ones did not

Introduction

Data

Analytic framework

Pollution result

Productivity results

Air discharge fees

2006

Water discharge fees

Basic idea of our analysis

We combine the following data:

- 1
 - Firm/year level data on environmental discharges
- 2 Chinese Annual Survey of Industrial Production data
- Provincial discharge fees

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

Basic idea of our analysis

• We combine the following data:

- Firm/year level data on environmental discharges
- 2 Chinese Annual Survey of Industrial Production data
- 3 Provincial discharge fees

• We document temporal and spatial variation in discharge fees

Substantial variation in increases in fees across provinces

Basic idea of our analysis

• We combine the following data:

- Firm/year level data on environmental discharges
- 2 Chinese Annual Survey of Industrial Production data
- Provincial discharge fees
- We document temporal and spatial variation in discharge fees
 - Substantial variation in increases in fees across provinces
- We evaluate impact of fees on:
 - Pollution output for four pollutants
 - Firm's productivity

Sources of identification

- Use discontinuity based approach
 - Some provinces increased fees while nearby ones didn't
- Consider firms near border of provinces
 - Base results consider a 40KM band
- Further control for baseline effects of each province
 - Identification is a regression discontinuity in the difference-in-difference
 - Search for sharp *changes* on one side of border when fees increase
- Example: one region in sample is the Fujian-Guangdong border
 - Guangdong (but not Fujian) raised air fees from 0.6 to 1.2 and water fees from 0.7 to 1.4 in 2010
 - Allow for border area / year interactions
 - Allow for firm fixed effects or Fujian-near-border / Guangdong-near-border fixed effects
- Sample contains multiple such areas

Pollution result

Productivity results

Example on three provinces

Sac

Introduction	Data	Analytic framework	Pollution results	Productivity results

Interpretation of map

- In this three province example, we there are 7 regions
 - This includes four border regions and three interior regions
 - Border regions are $(B_{12},B_{21}),\,(B_{13},B_{31})$, (B_{23},B_{32}) , and $(B_{123},B_{213},B_{312})$
 - Interior regions are I_1 , I_2 , and I_3
- Map is based on Fujian, Guangdong, and Jiangxi provinces
 - But unlike map, the parts of those provinces near other provinces are separate regions
- We allow each region to have its own interaction with year
 - Each region within each province has a fixed effect (or we use firm fixed effects)
- Some specification use interior regions
 - Interior region times year fixed effects capture all fee changes
 - These regions help identify auxiliary parameters

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

Data source 1: discharge fees

- We examined documents from Chinese province for the period 2003-15 by all pollutants
 - Collected discharge fees by pollutant/year/province
 - Effective collection of fees started in 2003
 - Greatest number of changes in 2010

Data source 2: Environmental data

- Chinese Environmental Survey (CES), 2003-2015
 - Reports environmental discharges for manufacturing firms
- Derives from information collected the Chinese Ministry of Environmental Protection (MEP)
 - Most comprehensive environmental data in China
 - Only recently become accessible to researchers
 - Supposed to record 85% of water and air pollution

Data source 2: Environmental data

- Chinese Environmental Survey (CES), 2003-2015
 - Reports environmental discharges for manufacturing firms
- Derives from information collected the Chinese Ministry of Environmental Protection (MEP)
 - Most comprehensive environmental data in China
 - Only recently become accessible to researchers
 - Supposed to record 85% of water and air pollution
- Four recorded measures of pollution noted above
 - SO₂: a major source of smog
 - NOx: another major source of smog
 - COD: an indicator of water pollution
 - NH3-N: another indicator of water pollution
 - Coal: fuel coal consumption
 - Oil: fuel oil consumption
 - Gas: natural gas consumption
 - Cost: operating costs of air/water abatement equipment
 - Number: number of air/water abatement equipment

Sectors with most and least SO₂ pollution

Sector name	SO ₂	SO ₂	COD	COD
	rank	discharge	rank	discharge
		total		total
Nonmetal Mineral Products	1	21,908	12	479
Smelting & Pressing of Ferrous Metals	2	19,930	8	1,349
Raw Chemical Materials & Chemical Products	3	13,753	3	5,147
Smelting & Pressing of Nonferrous Metals	4	10,492	13	396
Petroleum Processing, Coking Products & Nu-	5	7,627	10	838
clear Fuel Processing				
Papermaking & Paper Products	6	5,598	1	13,414
Textile Industry & Textile Clothes, Shoes &	7	3,573	4	3,785
Caps Production				
Major Grain & Sideline Food Processing	8	2,398	2	6,630
Food Production	9	1,468	6	1,467
Beverage Production	10	1,406	5	2,619
Tobacco Processing	24	145	25	48
Communications, Computer & Electric Equip-	25	111	14	350
ment Manufacturing				
Instruments, Meters & Clerical Machinery	26	77	26	43
Printing & Record Medium Reproduction	27	46	28	29
Furniture Manufacturing	28	36	29	26
Waste Resources & Waste Materials Recycling	29	34	30	20
Culture, Education & Sports Facilities	30	30	27	38

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Pollution results

Productivity results

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Summary statistics

	Mean	Std.dev	75% Percentiles	25% Percentiles
SO2	120.79	929.77	51.2	4.05
NOx	71.54	629.42	17.16	1.4
COD	54.29	492.62	19.09	0.65
NH3-N	6.25	77.8	1.48	0.06
# of firms in sample	1,175,081			
# of firms we use	810,351			
Average tenure of firm	5.58			

Data source 3: Firm production data

- Data from Annual Survey of Industrial Production (ASIP), 2003-2013
 - From annual surveys conducted by National Bureau of Statistics
 - Include firms with sales above 5 million RMB
 - Equivalent to U.S. Census of Manufactures

Data source 3: Firm production data

- Data from Annual Survey of Industrial Production (ASIP), 2003-2013
 - From annual surveys conducted by National Bureau of Statistics
 - Include firms with sales above 5 million RMB
 - Equivalent to U.S. Census of Manufactures
- For our purposes, these data contain manufacturing sectors, two-digit industrial codes from 13 to 43
 - We standardize industrial codes to 2013 definition
 - Link to CES data, but linkage is not perfect

Data source 3: Firm production data

- Data from Annual Survey of Industrial Production (ASIP), 2003-2013
 - From annual surveys conducted by National Bureau of Statistics
 - Include firms with sales above 5 million RMB
 - Equivalent to U.S. Census of Manufactures
- For our purposes, these data contain manufacturing sectors, two-digit industrial codes from 13 to 43
 - We standardize industrial codes to 2013 definition
 - Link to CES data, but linkage is not perfect
- Main variables that we use:
 - Number of workers, capital, output

Data source 3: Firm production data

- Data from Annual Survey of Industrial Production (ASIP), 2003-2013
 - From annual surveys conducted by National Bureau of Statistics
 - Include firms with sales above 5 million RMB
 - Equivalent to U.S. Census of Manufactures
- For our purposes, these data contain manufacturing sectors, two-digit industrial codes from 13 to 43
 - We standardize industrial codes to 2013 definition
 - Link to CES data, but linkage is not perfect
- Main variables that we use:
 - Number of workers, capital, output

• We exclude data for 2010 and 2012, considered very unreliable

Pollution result

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Summary statistics

	Mean	Std.dev	75% Percentiles	25% Percentiles
Output	136217.7	1164171	82826	12639.02
Labor	257.8	921.89	268	56
Capital	34718.18	401470.6	15692.92	1707.99
# of firms in sample	3,167,734			
# of firms we use	2,558,737			
Average tenure of firm	4.75			

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Aggregate results

	Y = log Output			•	Y = log Labor			Y = log Capital		
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	
Lagged In AirFee	0.142 (0.105)		0.202 (0.138)	0.149** (0.0616)		0.142 (0.0971)	0.204*** (0.0605)		0.168* (0.0836)	
Lagged In WaterFee		0.00728 (0.164)	-0.141 (0.207)		0.120 (0.105)	0.0165 (0.146)		0.205* (0.108)	0.0822 (0.135)	
Region*Year, Side-of-border, Industry*Year FF	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	
Observations R ²	30359 0.770	30359 0.770	30359 0.770	30271 0.758	30271 0.758	30271 0.758	30361 0.735	30361 0.735	30361 0.735	

Introduction	Data	Analytic framework	Pollution results	Productivity results
Model				

- In any year and region, firms faced with a technology
 - Two outputs: production revenue and pollution discharges
 - Three inputs: capital, labor, plus a TFP term
 - In logs, y, d, k, l, ω respectively
- Allow for a revenue shock ε
 - Can be due to variation in demand elasticity, for instance
- With a Cobb Douglas specification, we can write:

$$Y^{ ilde{eta}_y} D^{ ilde{eta}_d} = K^{ ilde{eta}_k} L^{ ilde{eta}_l} e^{ ilde{arepsilon}} e^{ ilde{arepsilon}}$$

$$\Rightarrow \mathbf{y} = \beta_{\mathbf{k}}\mathbf{k} + \beta_{\mathbf{l}}\mathbf{l} + \beta_{\mathbf{d}}\mathbf{d} + \omega + \varepsilon_{\mathbf{k}}$$

where
$$\beta_k = \frac{\tilde{\beta}_k}{\tilde{\beta}_y}, \, \beta_l = \frac{\tilde{\beta}_l}{\tilde{\beta}_y}, \, \beta_d = -\frac{\tilde{\beta}_d}{\tilde{\beta}_y}, \, \omega = \frac{\tilde{\omega}}{\beta_y}, \, \varepsilon = \frac{\tilde{\varepsilon}}{\beta_y}$$

• Major goal of estimation is to evaluate production/pollution tradeoff, β_d

Empirical implementation of model

Reduced form regressions of revenue output on inputs and fees

$$\mathbf{y} = \beta_k \mathbf{k} + \beta_l \mathbf{l} + \beta_f \mathbf{f} + \omega + \varepsilon^{\mathbf{y}}$$

- f is the log of air or water (or both) fees
- ω includes a variety of fixed effects

2 Reduced form regressions of discharges on inputs and fees

$$\boldsymbol{d} = \beta_f \boldsymbol{f} + \omega + \varepsilon^{\boldsymbol{d}}$$

- OLS regressions of the production function given above
- IV regressions of the production function given above
 - Fees instrument for discharge levels

Other details:

Two-way cluster at province and year level

Empirical implementation of model

- China has undergone a huge growth in productivity
- Accordingly, we let ω be the sum of:
 - Year fixed effects (always)
 - Firm fixed effects (in many cases)
 - Region × year interactions (in most cases)
 - Sector \times year interactions (in most cases)
 - Allows for different trends in productivity growth across regions and sectors

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Effects of air pollution fees on log SO₂, 2003-2015

	(1) Entire Province	(2) Entire Province	(3) Entire Province	(4) Entire Province	(5) Border Only	(6) Border Only
In AirFee	-0.236** (0.0869)	-0.121** (0.0478)	-0.442*** (0.113)	-0.216** (0.0831)	-0.440*** (0.115)	-0.216** (0.0819)
Firm FE Industry*Year FE Border FE Interior FE	Yes Yes Yes	Yes Yes	Yes	Yes Yes	Yes	Yes Yes
Side-of-Border FE	Yes		Yes		Yes	
Border*Year FE Interior*Year FE			Yes Yes	Yes Yes	Yes	Yes
Observations	810351	785264	810334	785244	276723	268375
R ²	0.179	0.794	0.189	0.798	0.228	0.801

Eeffects of air pollution fees on log coal consumption

	(1)	(2)	(3)	(4)	(5)	(6)
	Entire	Entire	Entire	Entire	Border	Border
	Province	Province	Province	Province	Only	Only
In AirFee	-0.134	-0.0551	-0.197*	-0.0356	-0.197*	-0.0460
	(0.0910)	(0.0657)	(0.102)	(0.0656)	(0.105)	(0.0646)
Firm FE Industry*Year FE Border FE Interior FE	Yes Yes Yes	Yes Yes	Yes	Yes Yes	Yes	Yes Yes
Side-of-Border FE Border*Year FE Interior*Year FE	Yes		Yes Yes Yes	Yes Yes	Yes Yes	Yes
Observations	1054702	1023637	1054677	1023608	338747	328720
R ²	0.244	0.800	0.250	0.803	0.250	0.792

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Eeffects of air pollution fees on log oil consumption

	(1) Entire Province	(2) Entire Province	(3) Entire Province	(4) Entire Province	(5) Border Only	(6) Border Only
In AirFee	-0.0348 (0.0375)	-0.0125 (0.0221)	-0.0190 (0.0112)	-0.0132** (0.00521)	-0.0185* (0.00947)	-0.0154** (0.00631)
Firm FE Industry*Year FE Border FE Interior FE	Yes Yes Yes	Yes Yes	Yes	Yes Yes	Yes	Yes Yes
Side-of-Border FE	Yes		Yes		Yes	
Border*Year FE Interior*Year FE			Yes Yes	Yes Yes	Yes	Yes
Observations	1054702	1023637	1054677	1023608	338747	328720
R ²	0.0704	0.676	0.0802	0.681	0.0826	0.687
Standard arrora in	noronthoo	~~				

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Eeffects of air pollution fees on log natural gas consumption

	(1)	(2)	(3)	(4)	(5)	(6)
	Entire	Entire	Entire	Entire	Border	Border
	Province	Province	Province	Province	Only	Only
In AirFee	0.0497	0.0470	0.0195	0.0675	0.0159	0.0653
	(0.0329)	(0.0370)	(0.0523)	(0.0575)	(0.0498)	(0.0567)
Firm FE Industry*Year FE Border FE Interior FE	Yes Yes Yes	Yes Yes	Yes	Yes Yes	Yes	Yes Yes
Side-of-Border FE Border*Year FE Interior*Year FE	Yes		Yes Yes Yes	Yes Yes	Yes Yes	Yes
Observations	928545	888668	928522	888640	295430	282046
R ²	0.0576	0.639	0.0618	0.642	0.0701	0.665

Effects of water pollution fees on log COD, 2003-2015

	(1) Entire Province	(2) Entire Province	(3) Entire Province	(4) Entire Province	(5) Border Only	(6) Border Only
In WaterFee	-0.200** (0.0786)	-0.0874** (0.0366)	-0.0690 (0.112)	-0.0101 (0.0311)	-0.0600 (0.118)	-0.00404 (0.0280)
Firm FE Industry*Year FE Border FE Interior FE	Yes Yes Yes	Yes Yes	Yes	Yes Yes	Yes	Yes Yes
Side-of-Border FE Border*Year FE	Yes		Yes	Yes	Yes	Yes
Interior*Year FE			Yes	Yes	105	105
Observations	771089	745593	771059	745563	238449	229945
R ²	0.205	0.795	0.213	0.800	0.244	0.805

Effects of air and water fees on log output, 2003-2013

	(1) Entire Province	(2) Entire Province	(3) Entire Province	(4) Entire Province	(5) Border Only	(6) Border Only
In AirFee	0.0745	0.122	0.157**	0.115*	0.153**	0.111*
In WaterFee	-0.151	-0.170	-0.221**	-0.0925	-0.219**	-0.0918
InL	0.465***	0.348***	0.469***	0.353***	0.468***	0.348***
lnK	0.303*** (0.0195)	0.225*** (0.0201)	0.300*** (0.0197)	0.214*** (0.0190)	0.296*** (0.0220)	0.209*** (0.0214)
Firm FE	Ves	Yes	Ves	Yes	Ves	Yes
Border FE	Yes	103	103	103	103	103
Side-of-Border FE	Yes		Yes		Yes	
Interior*Year FE			res Yes	res Yes	res	res
Observations	2490827	2400633	2490815	2400621	739139	708288
K ⁻	0.608	0.855	0.614	0.861	0.617	0.864

* p < 0.10, ** p < 0.05, *** p < 0.01

Heterogeneous effects of air and water fees on log output, 2003-2013

	(1) Entire Province	(2) Entire Province	(3) Entire Province	(4) Entire Province	(5) Border Only	(6) Border Only
In AirFee	-0.0580	0.120	0.0951	0.194	0.229	0.189
In WaterFee	(0.222) 0.998** (0.282)	(0.173) 0.843** (0.210)	(0.215) 0.837** (0.210)	(0.157) 0.820** (0.272)	(0.189) 0.111 (0.121)	(0.159) 0.176 (0.241)
InL	0.169**	0.187**	0.148**	0.152**	0.173**	0.217***
InK	-0.313***	-0.181***	-0.313***	-0.160***	-0.294***	-0.161***
In <i>L</i> ²	0.0387**	0.0300**	0.0399**	0.0326***	0.0418**	0.0255**
In K ²	0.0416***	0.0312***	0.0413***	0.0292***	0.0407***	0.0288***
In <i>LK</i>	-0.0185	-0.0208** (0.00864)	-0.0178	-0.0201 ** (0.00862)	-0.0198	(0.00331) -0.0179* (0.00919)
In L * InAirFee	0.0111	-0.0330	-0.00210	-0.0504	-0.0141	-0.0541
In K * InAirFee	0.00238	0.0120	0.00400	0.0142	-0.00167	0.0192
In L * InWaterFee	-0.217***	-0.204***	-0.225***	-0.217***	-0.117**	-0.134** (0.0553)
In K * InWaterFee	0.00779 (0.0199)	0.0182 (0.0213)	0.0143 (0.0212)	0.0296 (0.0243)	0.0291 (0.0231)	0.0488* (0.0261)
Firm FE		Yes		Yes		Yes
Industry*Year FE Border FE Interior FE	Yes Yes Yes	Yes	Yes	Yes	Yes	Yes
Side-of-Border FE Border*Year FE	Yes		Yes Yes	Yes 🔹	Yes Yes	Fres ►

Introduction	Data	Analytic framework	Pollution results	Productivity results
Conclusi	on			

- Chinese provinces started implementing pollution fees starting in 2003
 - This paper forms first look at these fees
- Fees appear to have lowered emitted pollution substantially
- Water fees appear to have lowered productivity
- No effect of air fees on lowering pollution
 - But, firms are switching fuels away from coal that may contribute to less pollution

(日) (日) (日) (日) (日) (日) (日)

- Heterogeneous impacts based on capital and labor
 - Fees appear to have increased the productivity of capital and lowered productivity of labor
 - Robust to relative usages of capital and labor